Thinking Outside the Box: A Quantum Transition-State Theory

Mohan Shankar

Egorov Group April 19th, 2024

Transition State Theory

Background:

- Developed to find chemical reaction rates
- Based on classical mechanics

Drawbacks:

 Not good for light elements and low temps

Quantum Effects

Tunneling:

Zero Point Energy:

$$E_n = \frac{\hbar^2 \pi^2}{2ml^2} n^2 \rightarrow \Delta x \Delta p \approx \hbar \text{ where } \Delta x \approx l \text{ and } \Delta p \approx \frac{\hbar}{l} \rightarrow \boxed{E_{min} \approx \frac{\Delta p^2}{2m} \approx \frac{\hbar^2}{2ml^2} \neq 0}$$

Comparison of Formalisms

Classical Mechanics:

- Deterministic, described by x(t) and p(t) of all particles present
- Rates of effusion are known

Quantum Mechanics:

- Probabilistic, described by the wavefunction $\psi(x)$
- Modify particle-in-a-box (P.I.B.) system to find <u>quantum rates</u>

Methodology

Solver Validation

Add Slit

Find Rates

Compare known and numeric PIB
Results

$$\psi(x,y) = \frac{2}{L}\sin\left(\frac{n\pi x}{L}\right)\sin\left(\frac{n\pi y}{L}\right)$$

$$E_{n,y} = \frac{\hbar^2 \pi^2}{2mL^2} (n_x^2 + n_y^2)$$

Add slit and find Ψ by solving Schrödinger's Eqn.

$$\widehat{H}\Psi = E\Psi$$

$$\widehat{H} = -\frac{\hbar^2}{2m} \left\{ \left(\frac{\partial^2}{\partial x^2} \right) + \left(\frac{\partial^2}{\partial y^2} \right) \right\}$$

for effusion system

Find rate constants, k(T)

$$k_r(T) = \frac{1}{Q_r(T)} \lim_{t \to \infty} C_{fs}(t)$$

$$k_r(T) = \frac{1}{Q_r(T)} \int_0^\infty dt \, C_{ff}(t)$$

Solver Validation

Quantum Effusion

6 PT. Gap, 2 PT. Wall Thickness

2 PT. Wall Thickness, 6 PT. Gap

10 PT. Gap, 2 PT. Wall Thickness

10 PT. Wall Thickness, 6 PT. Gap

0

Rates at Different Gap Size

Egorov Group

Rates at Different Wall Thickness

Rates at Different Temperature

Extrapolated Rates for 0 PT. Wall Thickness

Future Work

arXiv:1408.0996

Thank you! Any Questions?

Double Hydrogen Transfer via Tunneling

Discretization

$$dx, dy = \frac{(L_{max} - L_{min})}{nx, ny \pm 1}$$

Discretization

$$dx, dy = \frac{(L_{max} - L_{min})}{nx, ny \pm 1}$$

C_{fs} Functions

Flux:

Number of particles through an area over time

Side:

Product side of system

Correlation Function:

Describes a statistical relationship b/t quantities

Finding Rates

Classical Approach

$$k(T) = \sqrt{\frac{k_B T}{2\pi m}} \cdot \frac{A}{V}$$

 k_B : Boltzmann Constant

A: Size of slit opening

V: Area of box

Quantum Approach

$$Q_r(T) = \sum_{n_x, n_y} \exp\left[-\frac{n_x^2 \pi^2 \hbar^2}{k_B T 2m l_x^2}\right] \cdot \exp\left[-\frac{n_y^2 \pi^2 \hbar^2}{k_B T 2m l_y^2}\right]$$

Extrapolating Rates

Kinetics using Correlation Functions

$$\hat{F}(s) = -\frac{i\hbar}{2m} \left\{ \delta(x-s) \frac{d}{dx} + \frac{d}{dx} \delta(x-s) \right\}$$

$$j(s,t) \equiv \langle \psi | \hat{F}(s) | \psi \rangle = -\frac{i\hbar}{2m} \left\{ \psi(s,t)^* \frac{\partial \psi(s,t)}{\partial s} - \frac{\partial \psi(s,t)}{\partial s}^* \psi(s,t) \right\}$$

$$C_{fs} = \sum_{i,j} exp \left[-\frac{\beta(E_i + E_j)}{2} \right] \frac{\hbar \sin\left(\frac{t(E_i - E_j)}{\hbar}\right)}{(E_i - E_j)} |\langle i|\hat{F}|j\rangle|^2$$

"Quantum mechanical rate constants for bimolecular reactions".

Chem Phys 79 (Nov. 1983), pp. 4889-4898.