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Correlation Functions

In the field of kinetics, transition state theory (TST) is a well-
known method for calculating reaction rates. The theory is
classical in nature, however, and does not include quantum
mechanical effects. Consequently, the Egorov group is
interested in developing a quantum transition state theory
(QTST) to describe systems where TST models would
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classical results.
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validity of our solver, comparing known results for the

particle-in-a-box (PIB) system to numeric ones. From there,
a slit for effusion was added, and correlation functions were

Figure 1: Third excited state of {5 in the presence of a slit.
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calculated. Lastly, rates were extracted from the flux-side P 1,
correlation functions (C¢ ;) through dividing by the partition 0,
Q t Eff . function, Q/(T).
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Figure 3: Percent error of numeric solution for the 20 When we compared our numeric solutions to the analytical one,

particle in a box relative to the analytic solution. we found marginal error at the corners of the box, but e
insignificant error in the center and toward the edges as depicted 12F i -
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where p is the quantum mechanical momentum operator. From
here we find the second derivative over the dividing surface to
determine the flux squared factors, which are necessary to
generate the correlation functions.

Figure 7: Flux-side correlation functions of different gap sizes with the
plateau highlighted.

Figure 5: Example of an arbitrary reaction and dividing

surface.
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Flux-Side Correlation Functions at Varying Temperature
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Correlation functions provide information about how closely two variables are related. We are particularly interested in the flux-side and side-
side correlation functions, which elucidate the relationship between how many particles have crossed the dividing surface and how many
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Figure 6: Top) Series of graphs depicting flux-side correlation functions at 200, 1250, and 2000 K. Bottom) Series of graphs
depicting flux-flux correlation functions at 200, 1250, and 2000 K.
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Figure 8: Log of extrapolated rates as wall thickness tends to O from

correlation functions at varying temperatures and gap sizes.

From the flux-side correlation functions (Cr ), rates can be found by identifying plateaus and extracting the y-value. Once a relevant Cr s(t) is
found, we divide by the partition function calculated in order to produce a rate.



