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Figure 11:  Different 
adsorption sites on Pt(111)

Quantum Effusion
For many quantum mechanical problems, the Schrödinger 
Equation !𝐻Ψ = 𝐸Ψ	 and its solution will be necessarily 
introduced and utilized. While the elementary PIB system is 
easy to solve analytically, the introduction of a slit leaves a 
solution analytically infeasible yet numerically amenable. 

As such, the first step in the solution process was to spatially 
discretize the system via the construction of a Hamiltonian 
matrix and compare our numerical results for the PIB to the 
known, analytic solution. Once those results were verified, we 
introduced a slit to the system, depicted in Figure 2.

Figure 2: Diagram showing what the system looks like (not to scale). The 
black points depict equispaced points in a grid corresponding to the 
spatial discretization. The red lines represent the walls where the value of 
the wavefunction at and outside the walls are set to zero. The left box 
represents the area where the particle is initially placed while the right 
box is where the particle effuses into. Lastly, the blue line represents the 
dividing surface which is later used to calculate the flux.

For transition state theory, the choice of where to place the 
dividing surface is crucial for obtaining accurate rates. In order to 
extract rates of effusion from our system, we implement the 
quantum mechanical flux operator
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where 𝑝̂ is the quantum mechanical momentum operator. From 
here we find the second derivative over the dividing surface to 
determine the flux squared factors, which are necessary to 
generate the correlation functions.

Figure 5: Example of an arbitrary reaction and dividing 
surface.

Calculating Flux

Introduction In the field of kinetics, transition state theory (TST) is a well-
known method for calculating reaction rates. The theory is 
classical in nature, however, and does not include quantum 
mechanical effects. Consequently, the Egorov group is 
interested in developing a quantum transition state theory 
(QTST) to describe systems where TST models would 
otherwise fail.  To accomplish this, we compare the rates of 
effusion found from a quantum mechanical model with the 
classical results.

In order to accomplish this, we first begin by confirming the 
validity of our solver, comparing known results for the 
particle-in-a-box (PIB) system to numeric ones. From there, 
a slit for effusion was added, and correlation functions were 
calculated. Lastly, rates were extracted from the flux-side  
correlation functions (𝐶",$) through dividing by the partition 
function, Qr(T).

Analytical Wavefunctions

When a slit is introduced, the solutions to the Schrödinger 
Equation (𝜓) change such that the wavefunction primarily 
exists in the products region, though there is some recrossing 
to the reactant region at higher energy states, depicted in 
Figure 4.

During this process, it was important to ensure the system that 
was created produced accurate results when compared to the 
known solution. For the 2D particle in a box:
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When we compared our numeric solutions to the analytical one, 
we found marginal error at the corners of the box, but 
insignificant error in the center and toward the edges as depicted 
in Figure 3. We then moved on to the slit system, which has no 
analytical solutions.

Figure 3: Percent error of numeric solution for the 2D 
particle in a box  relative to the analytic solution.

Figure 4: The 10th excited state of the particle in a box 
system in the presence of a slit. For an insufficiently large 
system, recrossing into the reactant region occurs at high 
energy.

Correlation functions provide information about how closely two variables are related. We are particularly interested in the flux-side and side-
side correlation functions, which elucidate the relationship between how many particles have crossed the dividing surface and how many 
particles are on the product side at a given time.1
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Correlation Functions

Reaction Rates

Figure 1: Third excited state of ψPIB in the presence of a slit. 
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The flux-side and flux-
flux correlation functions 
were obtained for the slit 
system over a range of 
different temperatures 
as depicted in Figure 6. 
At higher temperatures, 
the system becomes 
unstable and collapses 
after some time has 
elapsed. However, the 
functions obtained all 
show a region of 
desirable plateau that 
will be used to extract 
the quantum rates, kQ. 
Increasing the total 
number of time steps is 
also currently being 
explored.

Figure 6:  Top) Series of graphs depicting flux-side correlation functions at 200, 1250, and 2000 K. Bottom) Series of graphs 
depicting flux-flux correlation functions at 200, 1250, and 2000 K.

From the flux-side correlation functions (𝐶!,#),  rates can be found by identifying plateaus and extracting the y-value. Once  a relevant 𝐶!,#(𝑡) is 
found, we divide by the partition function calculated in order to produce a rate.

Figure 7: Flux-side correlation functions of different gap sizes with the 
plateau highlighted. Figure 8: Log of extrapolated rates as wall thickness tends to 0 from 

correlation functions at varying temperatures and gap sizes.


