Quantum Mechanical Effusion Rates

out of a
2D Particle in a Box

Mohan J. Shankar

Department of Chemistry

University of Virginia
2024







Quantum Mechanical Effusion Rates

out of a
2D Particle in a Box

Mohan J. Shankar

A Thesis Presented to the Faculty of the
University of Virginia
for the

Distinguished Majors Program

Research under the supervision of:
Dr. Sergei Egorov

Department of Chemistry
University of Virginia
April, 2024



© Copyright by
Mohan J. Shankar
All rights reserved

(April 16th, 2024)



Contents

Abstract iii
List of Figures v
1 Introduction 1
2 Theory 3
2.1 Introductory Quantum Mechanics . . . . . . . . . . ... ... .. 3
2.2 TSTand QTST . . . . . . . 5
2.3 Effusion . . . . . ., 5
2.4 Correlation Functions . . . . . . . . . ., 6

3 Methods 9
3.1 The Code . . . . . . . 9
3.1.1 Creation of the Hamiltonian and Slit . . . . . . .. .. . .. .. ... 10

3.1.2 Flux and Correlation Functions . . . . . . . . . . . . . . .. .. ... 13

3.2 Finding Rate Constants . . . . . . . . . .. ... ... L. 15

4 Results and Discussion 18
5 Conclusion 24
Bibliography 25
A Code 26
B Example Calculation for Rate Constants 33

i



Abstract

In academia and industry, knowledge about rates is indispensable for scientists, providing
insight on pathway favorability and regioselectivity among other things. Transition-State
Theory (TST) is the standard framework to calculate these rates, but the theory provides
erroneous results at low temperatures and low masses as quantum effects such as tunneling
and zero-point energy have a non-negligible contribution. In this work, we modify the
well-known two-dimensional particle in a box quantum system to compute effusion rates
before comparing them to classical rates. This study shows that at low temperatures and
in small systems, quantum mechanical effusion rates k, greatly deviate from the classical
values k. where k£, << k., opposing intuition in the range of temperatures and gap sizes
explored. Nonetheless, quantum rates approached classical results in accordance with the
correspondence principle, corroborating the capabilities of this approach and highlighting
the potential of future results.
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CHAPTER 1
Introduction

For academic and industrial pursuits, the relative and absolute rates of reactions are im-
portant pieces of information to hold, often dictating pathways which can produce better
yields and control over attributes such as regioselectivity [1]. Consequently, the problem
of finding reaction rates is fundamental to our understanding of chemistry, resulting in the
development of Transition-State Theory (TST) starting in the 1930’s [2].

Within the framework of TST, reaction rates are found using classical mechanics oper-
ating under the assumption that a well-defined dividing surface separating reactants and
products known as the “transition-state” exists. An example is shown below in Figure 1.1.

Transition
State
Reactant

Product

Figure 1.1: FExample of a transition state for an arbitrary, elementary reaction traveling
along a potential energy surface.

Furthermore, processes in TST are assumed to occur adiabatically, start in thermal equi-
librium so they are amenable to treatment using the Boltzmann distribution, and have no
recrossing (reactants to products is not reversed).

Classical TST has been very effective at calculating reaction rates for systems involving
heavy atoms at high temperatures, but it often fails for the quantum regime where phenom-
ena such as tunneling and zero-point energy occur [3, 4]. As such, there is a need to develop



CHAPTER 1. INTRODUCTION

a Quantum Transition-State Theory (QTST) dependent on quantum flux through a dividing
surface in the absence of recrossing.

In this thesis, we study rate constants for quantum mechanical effusion of a particle
out of a two-dimensional particle in a box with a hope of establishing of a baseline for
QTST results. In Chapter 2, we discuss the theoretical minimum to understand the problem
including the fundamentals of quantum mechanics, a brief discussion of classical TST, QTST,
classical effusion, and Miller’s correlation functions from which we obtain the quantum rates
of effusion.

Chapter 3 elucidates the methodology through which the problem is solved, particularly
focusing on a finite difference method to numerically solve the partial differential equation
in addition to evaluation of the correlation functions. Chapter 4 is dedicated to the results
and their discussion, focusing on the behavior of the correlation functions over a range
of temperatures. Furthermore, the classical and quantum rate constants for a given wall
thicknesses and gap sizes are shown. Finally, we present a summary of our findings and the
most relevant conclusions of our work in Chapter 5.



CHAPTER 2

Theory

God does not play dice with the
universe.

A Letter to Max Born, December 1926
from Albert Einstein

As it turns out, quantum mechanics acts in a stark contrast to that of classical mechanics
with the key difference being a probabilistic nature rather than a deterministic one. The
theory works nonetheless, and a brief discussion of it begins below.

2.1 Introductory Quantum Mechanics

F = ma stands in the pantheon of famous equations along with e = mc?, but the former is
not how Newton wrote it. Instead, force was expressed as the first derivative of momentum
with respect to time shown as

dp
F =2 —75 2.1
=P (2.1)
or the second derivative of position with respect to time multiplied by mass,
Fem®l i (2.2)
=m— = mr .
dt?

where the dot(s) denotes a derivative(s) with respect to time and bold letters vector quan-
tities. The last thing to note is that F' = —VV (r) where V denotes the gradient and V' (r)
the potential energy of the system. Consequently, the position r(¢) and velocity v(t) can be
found by solving the differential equations with the necessary initial conditions of 7(0) and
v(0).

In a more sophisticated formalism of classical mechanics, the state of a system with n de-
grees of freedom is described by 3N coordinates (q1, g2, ..., @35 ) and 3N momenta (pq, pa, ..., P3N )
resulting in a single point for 6N-dimensional phase space [5]. For this Hamiltonian formal-
ism, the dynamics of the system are governed by the Hamiltonian,

H(g,p) = Z P +V(q) (2.3)

2m

3
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which is the sum of all kinetic and potential energy in the system. The analogous differential
equations governing the dynamics of the system are

oMt (q,p)

- 2.4
op; @ ( )
and oM )
ap) .
0 Pi (2.5)

where g replaces r as generalized position and p generalized momentum.

Discussing the Hamiltonian formalism of classical mechanics makes the motivation of
quantum a bit easier. Classical mechanics dictates that at any given time, the state of a
particle can be specified by z(t) and p(t) as a point in phase space.

In quantum mechanics, the state of a particle is represented by a ket vector |[¢) in a
Hilbert space. Of note is that the Hilbert space comes equipped with an inner product
denoted as

(Bl) = / dx () (2) (2.6)

after picking a particular basis, typically position or momentum. Note that the asterisk
denotes the complex conjugate.

Here, the bra vector (¢| is an element of the ket vector’s dual space while ¢(z) and ¥ (z)
are the respective wavefunctions of the bra and ket. The wavefunction is, perhaps, the most
important mathematical object in quantum mechanics as its square [1(z)]? = ¥*(z)y(x)
has a probabilistic interpretation. Consequently, the total probability of finding the particle
must be unity,

/11 dx ™ (x)y(x) =1. (2.7)

Continuing with outlining the parallels of classical and quantum mechanics, classical
mechanics dictates that dynamical variables w are a function of position in momentum such
that w = w(z, p). In quantum mechanics, z and p are represented by a Hermitian operator
that acts on a ket via left multiplication:

Az |p) = [¢) = Aly) . (2.8)

From here, one must note that in any measurement of the observable associated with the
operator A, the only values that will ever be observed are the eigenvalues a, which satisfy
the eigenvalue equation:

Alpn) = ann) - (2.9)

Lastly, the state variables change in time follow Eqn. 2.4 and 2.5 for classical mechanics.
The quantum analogue sees the state vector, |i(t)) follow the time-dependent Schrodinger
equation

L, 0 y
zha |Y(z,t)) = H |¢(z,1)) . (2.10)
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Here, H is the quantum mechanical operator associated with energy aptly named the “Hamil-
tonian” and is analogous to the classical form, H as

H=T+V (2.11)

where T is the quantum mechanical operator for kinetic energy and V the operator for
potential energy. From 2.10, the time-dependent Schrodinger equation

Hy) = E), (2.12)

can be derived. Solving this equation will be one of the main focuses of this thesis.

2.2 TST and QTST

As mentioned in the introduction, TST follows the key assumption of reactions progressing
under the assumption of a well-defined transition state existing. Furthermore, the process
must be adiabatic, in thermal equilibrium, and progress without recrossing. The assumptions
for a QTST are the same save for the addition of quantum phenomena. It is important to
note the assumption of no recrossing is weak and is largely contingent on a good choice of
transition state.

Nonetheless, from TST, the rate can be accurately approximated as the classical flux
through the dividing surface. In particular, it was determined that TST captured the short-
time (limy_,o, ¢) limit of a classical flux-side time-correlation function which would be equal
to the exact rate (lim;_, t) in the absence of recrossing of the dividing surface [6, 7.

In accordance with linear operators corresponding to physical observables within quantum
mechanics, Miller developed correlation functions which leverage the quantum mechanical
flux operator and provide entirely accurate rates [8]. With this power comes the draw-
back of computational infeasibility for sufficiently complex systems, leading many to develop
intermediate theories that balance computational cost and accuracy.

2.3 Effusion

In order to decide if a new theory is accurate, it is necessary to compare it to prior known
results in order to corroborate claims. In the case of TST and consequently QTST, the
known results come from the classical mechanical description of effusion, the phenomenon
when a gas particle passes through a gap which is smaller than the mean free path.

The kinetic theory of gases stemming from classical mechanics and TST arrive at the
same equation to calculate a rate constant

lkgT A
k=14 —— 2.1
2rm V'’ (2.13)

where kg is the Boltzmann constant, T is the temperature, m the mass of the particle, A
the area of the gap, and V the volume of the box. In the case of a two-dimensional system,
A corresponds to the size of the gap opening and V the area of the box.
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The assumptions of TST still hold in the case of deriving Eqn. 2.13 as the process
is adiabatic, reliably described in thermal equilibrium allowing for the use of Boltzmann
statistics, and there is no possibility of recrossing. As a result, comparison of quantum
effusion rates to classical values offers a promising avenue for further development of a

QTST.

2.4 Correlation Functions

The flux (number of particles per unit time) passing through some point x = s is defined in
quantum mechanics using the flux operator,

A

Fs) = [H ﬁ} , (2.14)

St

where

. Lifz>s
h:h(a:—s):{o ifox<s

is the quantum mechanical projection operator. For the sake of TST, we let s be the position
of the dividing surface so that h yields 1 if the particle is on the product side and 0 otherwise.
For a time-dependent wavefunction in the position basis, the flux operator is generally defined
as

(2.15)

2m

(01F10) = o { oo, 2020 - 2D s )

where the asterisk here denotes the complex conjugate. The important implication of these
equations is that flux will be constant if 1(s,0) (a stationary state) is an eigenstate of the
Hamiltonian [9].

Using correlation functions, the rates & of quantum mechanical reactions can be calculated
as time goes to infinity. In particular, the rate can be expressed in terms of the flux-side C',
and flux-flux C; correlation functions [8]:

K(T) - Qu(T) = Jim Cr. (1), (2.16)
K(T) - Q.(T) = /OOO dt Cys(t). (2.17)

Q. (T) is the partition function of the reactant area which can be calculated using the eigen-
values of 2D particle in a box

2252 n2mlh?
Eppp, = 2 4 Y : (2.18)
oy 2mL2 2mL§

where I is the reduced Planck constant, L, , is the length of the box along the specified axis,
and n,, € N specifying the energetic state of the particle. With this found, the partition
function can be calculated as
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B 3; th ﬁn27r?h2
Q(T) = Zexp [_%] : nzexp {—#LZ} ) (2.19)

N

where 8 = 1/kgT. Explicitly writing out the flux-side and flux-flux correlation function
produces

Cys(t) = tr [B_BH/QFe_ﬁﬁ/QeHHt/hiLe_th/h} (2.20)

and
Crp(t) =tr [e’BH/QFe’ﬁH/Qe”Ht/hFe’th/h} : (2.21)

In order to explicitly evaluate these functions, we use a finite basis set of bound eigenstates
of the Hamiltonian C; expressing it as

iy = err B o (BB ) (2.22)

where 4, j are eigenstates of the Hamiltonian and E;, E; are their respective eigenvalues. In
order to calculate the flux squared factors, we use

2

LGIE) 12 = | (ils] (| ELs) (/1) 2 \/d /dsw ) (s By 5(s") (2.23)

which can be expresed as

2

3%( ) 3%( 5)

¥y(s) =

— = i(s) (2.24)

h2
[t
OR 4m
where JR is the path along the dividing surface and - the derivative across the surface
towards the product surface. In order to produce flux- 81de correlation functions to find the
rate, we integrate Eqn. 2.22 to produce

sin ( LEE)
Zexp[ AR ' (Eg_ £ ) wene (225)

Comparing Eqn. 2.16 and Eqn. 2.25, the presence of the sinusoidal function results in the
lack of a formal limit at infinite time. The issue is circumvented if the function is well-
behaved as it can reach the “limit” at an intermediate time before the instability associated
with discretizing the energy spectrum renders the expression inaccurate.

An example of a well-behaved Cy, and Cy; function are respectively shown Figure 2.1
and Figure 2.2 . In the case of Figure 2.1, a plateau is reached at t ~2000 until t ~6000
before falling into the unstable regime.
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Figure 2.1: An exzample of a well-behaved Cy4 function at 1500K for a system with a 2pt gap
and 2 pt wall thickness.
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Figure 2.2: An example of a well-behaved Cyy function at 1500K for a system with a 2pt gap
and 2 pt wall thickness.



CHAPTER 3

Methods

For this work, we employed a centered finite difference approximation to numerically describe
the second derivative in the x and y direction. The weights were taken as the limit of the
number of points tending to infinity, deemed appropriate as all points outside of the area
considered were set to zero [10].

The modified particle in a box system is shown below in Figure 3.1. The box on the
left is defined to be the “reactant” region, representing the initial position of the particle
while the larger box on the right represents the space a particle escapes into. Consequently,
the left box must be sufficiently small relative to the “product” box, thus their respective
dimensions were set to (1 Ax1 A) and (1 A x8 A) while the mass of the particle was defined

as 1 am.u. (1.66 x 107%7 kg).

§|ﬂ§

Figure 3.1: Diagram of the system, not to scale. The black points represent how the system
was spatially discretized. The red lines represent walls where the wavefunction and at and
outside the walls are set to zero. The blue line represents the dividing surface separating the
reactant region (left box) and empty space (right box). Finally, the blue curly brace denotes
the gap size while the black curly brace marks wall thickness.

As the dividing surface must be infinitesimally small, the thickness of the wall was varied
over 1, 2, 3, 4, and 5-points in order to extrapolate the rate as width of the wall tends to
zero. Gap size was similarly varied over the set of 2-, 4-, 6-, 8-, and 10 points.

3.1 The Code

All code for this project was written in Python using NumPy as the external library for
calculations. Everything was done in atomic units to simplify calculations. After results
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were found, they were converted back to SI units using the relevant conversion factors.

For the algorithms, we use 0,, to denote a vector of all zeros such that 0,, € R™. Similarly,
Op,m is used to represent a matrix of all zeros such that 0,,, € R"*™. It is important to
note that n, m € W and n can equal m. This is done for algorithmic clarity and denoting
the pre-allocation of arrays for increased code efficacy.

3.1.1 Creation of the Hamiltonian and Slit

Construction of the Hamiltonian matrix started by dividing the space into nx and ny points
along the x- and y-axis respectively. The space between each point including the walls was
defined such that dn = Lm;’;% where L.y is the largest value along one axis and L, the
minimum along the same axis. Lastly, n, denotes the number of points along the an axis

that is used to discretize the space. This procedure is shown in Algorithm 1 below.

Algorithm 1: Creation of the Hamiltonian Matrix for a 1D P.I.B. System

Procedure 1D_Hamiltonian(n, lmaz, lmin, m):

Input: Number of points: n; Max. length: Imaz; Min. length: [min; Mass: m
Output: Hamiltonian matrix H for the associated 1D system.
begin
dn «+ —lm“fijrllmm;
dn2 < dn? :
H < 0pp ; /* Initialize Hamiltonian, H for system € R */
for 1 < n do
for 1 < n do
if i = j then
‘ Hi:j = %2 ’ 2-7722-dn
else
| s = g )
end
end
end
end
end

A key part of making the Hamiltonian for the two-dimensional system is the use of the
Kronecker sum, defined as

A@BEA@]B—i-]A@B. (31)

Here, A € C***, B € C"**, ® denotes a Kronecker product, and a,b € R. For the
following code, however, A, B € R**® R as the matrices will not contain i = /—1.
Applying the Kronecker Sum to the one-dimensional Hamiltonian corresponding to the x
and y-axis produces a Hamiltonian for a two-dimensional particle in a box system, shown
below in Algorithm 2.

10
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Algorithm 2: Creation of the Hamiltonian for a 2D P.I.B. System
Procedure 2D_Hamiltonian (hy, hy):
Input: 1D x-Hamiltonian: h,; 1D y-Hamiltonian: h,
Output: Hamiltonian matrix H for the associated 2D P.I.B. system.
begin
| H=h,®h, ; /* H for P.I.B. €R? before adding slit */
end

end

The Kronecker sum computationally produces the same result and qualitatively makes
sense to apply as it’s used to combine two vector spaces and the respective “cross terms” as
well.

For the final portion of creating the Hamiltonian, the slit is introduced into our system.
Particularly, it is placed symmetrically such that the center of the slit lies at the center of the
y-axis. The eigenvalues and eigenfunctions are then found where the latter are normalized
in order to fulfill their probabilistic interpretation. The logic for its creation is listed below
in Algorithm 3.

11
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Algorithm 3: Creation of the Hamiltonian for 2D Effusion System
Procedure effusion_slit (hy, hy):

Input: x-points: nx; y-points: ny; gap size: s; wall thickness: w; 2D

Hamiltonian: H

Output: Hamiltonian matrix H for the associated 2D Effusion system.

begin

1=-1;

if k¥ < nz then

if 7 < ny then

i=1+1;

r=dz-k+xmin ;

y=dy-j+ymin ;

if%<y<%+w-dythen

if x < (—”2‘”” — %) or x > (—”’;‘” + %) then
Hz' - Onm,ny )
Hj,i = Ona},ny ;
H;; = -1
end
end
end
end
end
Diagonalize H ; /* Recall the eigenvecs for H = v; */
forall 7 do
z= Wi|2 ;
norm = /sum 2 ;
Q/}‘ — Wi
¢ norm
end

end

An example of a wavefunction produced through this scheme is shown below in Figure
3.2.

12
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-04 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
Y, Energy State: 3

Figure 3.2: An example of a normalized wavefunction in the 3rd excited state found at a 2
point wall thickness and 6 point gap size where nx = 20, ny = 160.

3.1.2 Flux and Correlation Functions

The derivative over the dividing surface is calculated using centered finite difference approx-
imations of the fourth order. The process can be found below in Algorithm 4.

13
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3.1. THE CODE

Algorithm 4: Calculation of Flux.

Procedure fluz_calculator (z, y, nx, ny, d, s):

e

e

Input: # of x-points: nx; # of y-points: ny; wall thickness: d; gap size: s

Output: Flux Squared Matrix.

begin
cd < 04
F «+ Oz‘,j

end

—h

zz = 1.0

else

end
end
Cdk = 2

end
nd

forall 7 do
forall Points on Div. Surf. ;

do

‘ 61[)1(1) — zZ)7,',(z,y—2)_8 wi,(z,yfl)"" Swi,(z,y+1) — wi,(z,y+2)

I

Y

fr2 < F?%

or k <ddo

‘ ZZ =

zZ

2 (k1)

for j < d do
if j # k then

(j+1)?

(G+1)2—(k+1)2

| Continue

/* First deriv.

dy
end

forall 7, j do

- __n
‘ FYZ'J - er div. surf  2m {

end
fr2=F}
nd

V() —

along div. surf. x*/

Finally, the correlation functions were calculated as described in Eqn. 2.22 and Eqn.

2.25. An algorithm for this procedure can be found below in 5.

14



CHAPTER 3. METHODS 3.2. FINDING RATE CONSTANTS

Algorithm 5: Calculation of Correlation Functions.

Procedure corr_calculator(T, t, fx2):
Input: Temperature range: T'; time array: t; Flux Squared Matrix: fz2

Output: Cfs(t) and Cyp(t) functions.

forall ¢ that is considered do

Cfs <+ 0; /* Flux-Side Corr */
Cff +— Oy

end

forall i, 7 do

Spp = exp [—B(E";EJ} cos (t(E’;EJ')> - fx2
if i = 7 then
‘ Sfs = €IP [—B(E’TJFEJ} -t fa2

else

ﬁsin<w
1

(Ei—Ej)

)-fa:2

Sf,s€TP [— B(EZ;Ej]

end

end

Crr=Crr+ 8553
Cps = Cps + 55
end

3.2 Finding Rate Constants

Finding the constants is contingent on the flux-side correlation function Cy, being well-
behaved, resulting in a plateau existing at an intermediate point in time. In order to quan-
titatively approach this, we implement numerical differentiation at each point to find where
the derivative is ~ 0, creating a step function to denote where this plateaus are located. A
very simple algorithm for the procedure can be found below in 6.

15
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Algorithm 6: Calculation of Rates.

Procedure rate_calculator(Cfs, ms):
Input: Correlation Function: Cy,; max_slope: ms
Output: The length of each plateau in the step function.
dec < 0y ; /* Array to hold num. deriv. */
sf 0 /* Step Func. */
forall i € Cf; do

dCyg
‘ de; = =5

end
for i € dc do
if 2 ~ 0 then
| sfi=1
else
| sfi=0
end

end
end

forall consecutive values of 1 in sf do
| Return start and stop point of each string of 1’s

end

Once the ranges with 1 of the step function are found, the middle of the largest plateau
is taken and the value of C}, isolated. An example of the step function relative to C, at
1000 K is shown below in Figure 3.3.

10Fr— - 17 1771 1 v r r 1 Tt r T J

(w\/\ / -Z

Cy [hartree]
I
o

—

o
IS
—TT

0.2F

0.0F

i 1 I i i 1 i i i 1 i i i 1
4000 6000 8000 10000
t [AU]

Figure 3.3: Uy, function at 1000K for a system with a 6pt gap and 2 pt wall thickness. The
blue plot denotes the fluz-side correlation function while the orange plot is a step function
whose value is “1” if the numerical derivative is ~ 0 and 0 otherwise.

16
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The black dashed line denotes the center of the widest plateau where its intersection
with CY, is the y-value we extract to calculate the quantum rate constants, k,. Finally, these
results as wall thickness tended to zero were extracted at a fixed temperature and gap size
using a quadratic fit. An example of this can be found below in Figure 3.4.

e k(M)
\ —-== fit

Rate [Hz]

© = = = =
~ o N w ~
w o w o w

) ; ) !

b
-
td
td
7
td

4

4

o

0

o
|
7/

o
N
]

/

o
=]
S
!
1
1
1
1
1
|
1
\
\
[ 4

Wall Thickness [points]

Figure 3.4: Exzample of fitting a quadratic function to rate constants at 1250 K with a 6 point
gap.
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CHAPTER 4
Results and Discussion

Rate constants were calculated for the system as described at the beginning of the previous
chapter. The key points are the reactant box is 1 A x 1 A while “open space” 1 A x 8 A,
represented by 60 x 60 and 60 x 480 points respectively. Consequently, an n point quantity
has a conversion factor where 1 point = 0.016 A thus n points = 0.016n A. These lengths,
nx, and ny were found to be adequate for convergence of rates by a collaborator, eliminating
the need to increase computational load by through an increase in number of points.

The mass of the particle was 1 a.m.u. (1.66 x 10727 kg), and the wall thickness and gap
size were varied between 1, 2, 3, 4, 5, and 2, 4, 6, 8, and 10 points respectively. Plots of the
log of the quantum and classical rate constants are shown in Figure 4.1 through Figure 4.5.
It’s important to note that Eqn. 2.13 has no dependence on wall thickness as the analytic
solutions expresses results where wall thickness is zero. Consequently, the classical rates in
the aforementioned figures will be the same while the quantum rates differ.
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Figure 4.5: Log of quantum vs. classical rate constants at a 5 point wall thickness. The
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units of each rate constant were in Hz prior to taking the log.

The above figures within the chapter show expected deviation between quantum and
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CHAPTER 4. RESULTS AND DISCUSSION

classical constants save for the high temperature limit where the correspondence principle
appears to hold. Similarly, the intuitive proportionality between gap size and temperature
holds, evidenced by larger gap sizes and temperatures producing larger rates. Interestingly,
the gap size appears to have a greater effect on the quantum rate constants evidenced by the
order(s) of magnitude leaps when comparing points at a constant temperature and different
gap sizes to constant gap size and varying temperature. A similar trend can be seen when
comparing wall thickness and rates as the thinnest walls yield the greatest quantum values.

One possible rationalization for the gap size vs. temperature contributions to the rate
constants can be found by returning to Eqn. 2.13 as we see k o< T%/2. On the other hand,
k oc A denotes that the gap size has a greater contribution to the rate in the classical case and
could likely hold true in the quantum regime. It is difficult to make a similar argument for
wall thickness and its effects as it is absent in the analytic, classical solution. It nonetheless
seems reasonable that wall thickness has a similar effect as gap since they are physically
similar parameters.

Where things deviate from expected results come when comparing the relative constants
between the classical and quantum formalism. At each wall thickness, there appears to be
some “quantum inhibition” where the quantum rates are orders of magnitude lower than the
classical ones save for the high temperature, large gap size limit. This could presumably be
caused by the discretization scheme, funneling the particle along a certain path rather than
giving it free reign to effuse.

Another point of departure from intuition is the lack of rates increasing slightly at low
temperatures where quantum mechanical effects such as tunneling and zero-point energy
make significant contributions. Instead, we see rate as a monotonically increasing function
of temperature and gap size though it’s possible sufficiently low temperatures and lengths
were not considered. Finally, quantum rate constants extrapolated as wall thickness went to
0 can be found in Table 4.1.
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CHAPTER 4. RESULTS AND DISCUSSION

Table 4.1: Extrapolated quantum rate constants kg at a wall thickness of zero in units of
Hz while temperature and gap size are varied.

Temperature [K] 2 PT. Gap 4 PT. Gap 6 PT. Gap 8 PT. GAP 10 PT. Gap
1.000e4-02 2.080e+07 3.155e4+08 1.575e+09 4.991e+09  1.236e+10
2.000e+-02 2.349e+07 3.572e408 1.783e+09 5.684e+09  1.398e+10
4.000e4-02 3.999e+07 6.182e408 3.160e+09 1.018e+10  2.480e+10
6.000e+02 6.473e+07 1.019e4+09 5.336e+09 1.707e+10  4.067e+10
7.500e+02 8.911e+07 1.422e409 7.517e+09 2.373e+10  5.379e+10
1.000e+4-03 1.395e4+-08  2.275e+09 1.209e+10 3.743e+10  9.867e+10
1.250e+03 2.026e+08 3.365e409 1.777e+10 6.063e+10  1.410e+11
1.500e+03 2.778e+08 4.711e4+09 2.475e+10 8.320e+10  1.860e+11
1.750e+4-03 3.656e+08  6.294e409 3.273e+10 1.069e+11  2.321e+11
2.000e+03 4.678¢+08 8.145e+09 4.094e+10 1.340e+11  2.783e+11
2.500e+03 7.114e+08 1.267e+10 4.289e+10 1.818e+11  3.030e+11
3.000e+03 1.016e4+09 1.812e+10 4.404e+10 2.318e+11  3.965e+11
3.500e+03 1.377e+09  2.463e+10 4.524e+10 2.796e+11  4.560e+11
4.000e+4-03 1.809e+09 3.170e+10 4.511e+10 3.251e+11  5.099e+11
4.500e+03 2.292e+09 4.056e+10 4.377e+10 3.678e+11  5.589e+11
5.000e+03 2.828e+09 5.214e4+10 9.441e+10 4.075e+11  6.038e+11

Similarly to the data that was collected, the proportionality of temperature and gap size
to the quantum rates holds in the extrapolated results. Moreover, gap size has a greater
impact on the rates than temperature does, evidenced by the rough order in magnitude jump
looking across a row opposed to down a column. Figure 4.6 below shows the extrapolated
quantum rates plotted against the classical results.
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Even in the case of extrapolated quantum rates, we see k, << k. except at the high
temperature limit where the correspondence principle is followed. Furthermore, the general
trend of rate monotonically increasing with respect to temperature and gap size also persists.
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CHAPTER 5
Conclusion

This study shows that at low temperatures and in small systems, quantum mechanical
effusion rate constants k, greatly deviate from the classical values k.. Where things differ
from expectations are that k; << k. in most cases save for the high temperature limit where
the correspondence principle is present indicating the potential of the project.

In future avenues of this work, there are some parameters would be worth investigating.
One that would be most easily done is the use of a wider range of temperatures and gap sizes,
especially at very small values. The reason for this would be to probe whether or not the
present system does see rate act as a monotonically increasing function of both temperature
and gap size. On the other end of the spectrum, a larger box and heavier particle would be
fascinating to consider as the scale of things presented here is only feasible for a hydrogen
atom.

Varying the location of the slit is also alluring as disrupting the symmetry of the system
would presumably produce fairly different results. Finally, changing the solving methodology
from the finite centered difference method to another should be explored given the possible
effect of the wavefunction being unable to effuse. Furthermore, it would be computationally
infeasible for the number of points in the box to increase proportionally to the size unless
the discretization scheme becomes more efficient.
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CHAPTER A

Code

The code to produce the Hamiltonian, flux squared matrix, and calculate correlation func-
tions are found below.

B K
#  Egorov Group

# University of Virginia

#  Mohan Shankar

#

# 2d_slit.py

# "This file calculates eigenfunctions of P.I.B. in the presence of a slit"

# ________________________________________________________________________________

# DEPENDENCIES
import numpy as np
import matplotlib.pyplot as plt

# INPUTS
me = 5.485799e-4 # Electron mass in daltons
m_au = 1.0 / me

1x
ly

Il
=

.0 # Angstroms
.0 # Angstroms

I
(00]

a0

I
o

.529177258 # Bohr radius

1x/a0
ly/a0

1x_au
ly_au

nnx = 60 # number of x points
nny = 480 # number of y points

xmin 0
xmax = 1lx_au

Il
(@)

ymin
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APPENDIX A. CODE

ymax = ly_au

dx = (xmax-xmin)/(nnx+1)
dy = (ymax-ymin)/(nny+1)

pi = np.pi

nd = 2 # length of stenctl for derivative across dividing surface
wall_thickness = 5

cd = np.zeros(nd)

nn = 10000 # times to constider

# FUNCTION DEFINITIONS

def kron_sum(Al, A2):

1

Assumes A1, A2 are nzn, mxm matrices where m can be equal to m
il = np.identity(len(A1[0]))

i2 = np.identity(len(A2[0]))

return np.kron(A1,i2) + np.kron(il, A2)

def PIB_one(points, lmax, lmin, mass, hbar=1):

1

function to create Hamiltonian for 1D PIB
1
dn = (Imax-1lmin)/(points+1)
dn2 = dn**2 # second derivative
H = np.zeros((points, points)) # initialize
z = -pi*x*2/3.0 # weight for diagonal
for i in range(points):
for j in range(points):

if 1 == j:
H[i] [j] = z # weight for diagonals of matriz
else:
H[i1 [j] = (2/(i-j)**2)*((-1)**x(i-j+1)) # weights for mon-diagonals
H x= (-1/(2*mass*dn2)) # hbar = 1 hence 1/(2 * mass * dn2)
return H
B */

# CREATE MATRICES
hl_x = PIB_one(nnx, xmax, xmin, m_au) # 1-D Hamiltonian from z points
hl_y = PIB_one(nny, ymax, ymin, m_au) # 1-D Hamiltonian from y points
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APPENDIX A. CODE

H = kron_sum(hl_x, hl_y) # 2-D Hamiltonian
# STENCIL FOR FLUX ALONG DIVIDING SURFACE
for k in range(nd):

zz = 1.0
for j in range(nd):
if j = k:
zz *= ((j+1)**2) / ((G+1)**2 - (k+1)**2)
else:
continue

cd[k] = zz/(2*(k+1))

print("Matrices created!")

ettt */
# MAKE EFFUSION SLIT
i=-1

for k in range(nnx):
for j in range(nny):
1= 1i+1
x = dx * k + xmin
y =dy * j + ymin
if (1.0 / a0) <y < (1.0 / a0 + wall_thickness * dy):
if x <(0.5 * xmax - (gap_size/2.0) * dx) or x >(0.5 * xmax + (gap_size/2.0)
H[i] = np.zeros(nnx * nny)
H[:, i] = np.zeros(nnx * nny)
H[i, i] = -1
print ("Slit created!")

# CALCULATE EIGENVECTORS AND VALUES
eigvals, eigvecs = np.linalg.eigh(H) # find eigenvalues and eigenvectors
print ("Eigs found!")

# CLEANUP OF DATA
psi = np.transpose(eigvecs) # transpose for easier indexing

# as vector are returned in column form

psi = psilnp.argsort(eigvals)]
energies = eigvals[np.argsort(eigvals) .reall

cut = np.where(energies > 0)
print(cut)

energies = energies[cut]

psi = psilcut]
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APPENDIX A. CODE

for i in range(len(psi)):
normalization = np.sqrt(np.sum(psil[i]**2 * dy * dx))
psili] = psil[il/normalization

np.savez("eigs_file", psi = psi, eigvals = eigvals)
print("Eigs saved!")

# FIRST DERIVATIVE OVER DIVIDING SURFACE
dpsi = np.zeros((nn, nnx))

y = (1/a0) + 1.0 * dy
i0 = int((y-ymin)/dy)

for j in range(nn):
for i2 in range(unx):
ix = nny * 12 + 10

zz = 0.0
for k in range(nd):

kk =k + 1

zz += cd[k] * (psil[j]l[ix + kk] - psil[j][ix-kk])
zz = zz/dy

dpsilj, i2] = zz
print ("First derivative over dividing surface found!")
# CALCULATION OF FLUX SQUARED
fx2 = np.zeros((nn, nn))

for j1 in range(nn):
for j2 in range(nn):

zz = 0.0

for i2 in range(nnx):
ix = nny * 12 + 10
zz0 = dpsilj1l, i2] * psil[j2, ix] - psiljl, ix] * dpsil[j2, i2]
zz0 = 2zz0 * dy / (2.0 * m_au)
zz += zz0

ZZ = zz**2

fx2[j1, j2] = zz

with open("Energy.npz", "wb") as f:
np.savez(f, energies = energies, fx2 = fx2, )
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APPENDIX A. CODE

print ("Job was successfully completed!")

# Egorov Group

# University of Virginia
#  Mohan Shankar
#
#
#

correlation.py
"This code calculates correlation functions for a given system in parallel”

# DEPENDENCIES

import numpy as np

from multiprocessing import Pool # relevant package for parallel processing
from datetime import datetime

# INPUTS € LOAD IN DATA (PART 1)

start_time = datetime.now()

print("Starting!", start_time)

kb = 3.166830e-6 # Boltzmann constant inm hartree
har = 2.194746e5 # hartree in cm {-1}

Trange = np.array([100, 200, 400, 600, 750, 1000, 1250, 1500, 1750,
2000, 2500, 3000, 3500, 4000, 4500, 5000])

tmin = 0

tmax = 10000

nt = 1000

dt (tmax - tmin)/nt

hbar = 1.0

with np.load('Energy.npz') as data:
E = np.array([data['energies']])
fx2 = datal['fx2']

nn = np.shape(£fx2) [0]
# print ("Energies"”, E)
epsilon= np.log(le-16)
zero = E[0]

dE = E - E.transpose()
skE = E + E.transpose()

dEm = dE.copy()
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APPENDIX A. CODE

np.fill_diagonal (dEm, 1)

ttot =
CF = np
CS = np
CF[0] =
Cs[0]

np.arange(tmin, tmax+1, dt)

.zeros((2, nt+1))
.zeros((2, nt+1))
ttot
ttot

end_time = datetime.now()
print('Duration of Part One: {}'.format(end_time - start_time))

# Correlation Functions (PART 2)

start_time = datetime.now()

def £(T):
beta = 1/(kbx*T)

cut

= 2 * epsilon/beta

over = np.where(E > zero - cut)
if np.shape(over) ==

print (f 'Not converged at {T}')
Q = nn

else:

for

print(f'At {T}K, {over[0]} functions are significant')
if over[0] <= nn:

Q = over[0]
else:

Q = nn

time in range(nt + 1):
t = tmin + time * dt
zz = np.exp(-beta * 0.5 * sE[0:Q, 0:Q]) * £x2[0:Q, 0:Q]

CF1 = zz * np.cos(dE[0:Q, 0:Q] * t)

zzd = np.diagonal(zz)

CS1 = zz * np.sin(dE[0:Q, 0:Q] * t) / dEm[0:Q, 0:Q]
CSd = zzd * t

np.fill_diagonal(CS1, CSd)

CF[1, time] np.sum(CF1)
CS[1, time] = np.sum(CS1)

return CS, CF

if __name__ == '__main__"':
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APPENDIX A. CODE

pool = Pool(processes=10) # allocate number of cores for parallel processing
fargs=zip(Trange)

result = pool.starmap(f, fargs) # result is a list of all wvalues for CS, CF
# at a given T

# result is a 4-D object; result[a][b][c][d] --> a denotes which temp;
#b =0 -->CS;, b =1 --> CF

# [c][d] are then indices for a 2D matriz where the first column

# corresponds to time and the second the relevant correlation function

for i, val in enumerate(Trange):
np.savetxt('side-flux'+str(val)+'K.txt"',
np.transpose((result[i] [0] [0], result[i] [0][1])),
delimiter = ',', header="Time , Side-Flux", fmt='%1.4e')

# result[i][a] [b] means Trangel[i]; [a] = O means Fluz-Stide (CS);
# [b] = 0 means time column; b = 1 means correlation function;
# free index [d] corresponds to a particular element in column so it's unused

for i, val in enumerate(Trange):
np.savetxt ('flux-flux'+str(val)+'K.txt"',
np.transpose((result[i] [1] [0], result([i] [1][1]1)),
delimiter = ',', header="Time , Flux-Flux", fmt='%1.4e"')

# result[i][a] [b] means Trangel[i]; [a] = 1 means Fluz-Fluz (CF) [b] = 0 means
# time column while b = 1 means correlation function;

# [c][d] are then indices for a 2D matriz where the first column

# corresponds to time and the second the relevant correlation function

pool.close()
pool.join()

end_time = datetime.now()
print ('Duration of Part Two: {}'.format(end_time - start_time))
ety */
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CHAPTER B
Example Calculation for Rate
Constants

Returning to Fig. 3.3, the y-value associated with the point where the black dashed line meets
the correlation function is C4(3190) = 7.7884x 10~ " hartree. Recall k,(T') = C}s/Q,(T) thus
we must find Q,(7"). The partition function was numerically calculated using the following
code:

#  Egorov Group
# University of Virginia
#  Mohan Shankar

#

# partition_function.py

# "This file calculates numerical partition functions for a PIB system”
B */

# DEPENDENCIES
import numpy as np
import matplotlib.pyplot as plt

Trange = np.array([100, 200, 400, 600, 750, 1000, 1250, 1500, 1750,
2000, 2500, 3000, 3500, 4000, 4500, 5000])

T = 1000 # arbitrary temperature
temp_index = np.where(Trange == T) # get index of Trange array where T match

# CALCULATE PARTITION FUNCTIONS FOR DIFFERENT TEMPERATURES
hbar = 1.054571817e-34 # hbar in SI Units [J*s]

8
I

1.67262192e-27 # mass of proton [kg]

=
I

le-10 # 1 Angstrom so 1le-10 [m]
kb = 1.380649e-23 # Boltzmann const. in [J/K]
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APPENDIX B. EXAMPLE CALCULATION FOR RATE CONSTANTS

n = np.arange(l, 21, 1)
Q = np.empty_like(Trange)# intt. empty array w/ same dim as Trange
E = (up.pi ** 2 * hbar ** 2) / (2 * m *x L **x 2)

for i, temp in enumerate(Trange):
T = temp
beta = 1 / (kb * T)
zz = np.exp(-beta * E * n*x 2)
final = np.sum(zz)
Q[i] = final**2

print (Q[temp_index]) # find § for a given temperature

The numeric value of @,(1000) = 1.7369, so we find

7.7884 x 1077 hart
k, (1000) = ><1 e AIICC _ 44841 x 10~ hartree.

Finally, we convert from hartree to inverse seconds by using 1 hartree is 6.57966 x 10'° Hz:

6.57966 x 10 H
k,(1000) = 4.4841 x 107 hartree - . ? —2.95 x 10° Hz.
1 hartree
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