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functional treatment for mixtures of both disconnected (chain—

Ver ()
ring) and connected (chain-polycatenane) mixtures of the same, o
drawing coexistence binodals and exploring the ensuing response (y €] O i N
functions as well as the interface and wetting behavior of the
mixtures. We show that worsening of the solvent quality for the
rings brings about a stronger propensity for macroscopic phase i SC ‘
separation in the linear-polycatenane mixtures, which is predom- Lo
inantly of the demixing type between phases of similar overall

particle density. We formulate a simple criterion based on the
effective interactions, allowing us to determine whether any specific linear-ring mixture will undergo a demixing phase separation.

ABSTRACT: We derive and parameterize effective interaction
potentials between a multitude of different types of ring polymers
and linear chains, varying the bending rigidity and solvent quality

for the former species. We further develop and apply a density (Q»ﬁ%}:

1. INTRODUCTION unexpected rubbery plateau reappears, which has been
tentatively attributed to strong ring—ring interpenetration

Recently, there has been a growing interest in research of o6
and caging.”™ It is important to realize that the above

polymers with complex architectures,"” such as ring polymers.

Binding the two ends of a linear chain together, thereby differences are brought about purely by differences in the
turning the chain into a ring, creates a permanent topological global topology of a macromolecule, while the chemistry of the
invariant, since bonds of such rings can never cross each monomeric units is the same. Fundamental understanding of
other,”* which comes with associated entropic penalty. The the above effects is important, mainly because ring polymers
above constraints dramatically affect the resultant macro- are prevalent in nature in the form of plasmids or bacterial
molecular properties, for example, the radius of gyration, R,. DNA, and furthermore, topological constraints play an
Conformations of a single, ideal linear chain follow random- important role in organization of linear chains as DNA in
walk statistics, resulting into scaling relation R, ~ N°3, where N human genome27_29 as well.

is the polymerization degree.” On the other hand, a single ring Topological constraints go beyond having just a chain or a
exhibits R, ~ N®5% with the Flory critical exponent,’ even for a ring.”’ Notably, the ring topology allows for permanent linking
ring with no excluded volume interactions. Moreover, in the of two such macromolecules via a Hopf link,*' forming
concentrated melts, the chains anew obey the random-walk [2]catenanes,”* " with prospective application as components
statistics, while rings7_11 adopt non-Gaussian conformations of of molecular machines®®®” or in medicine.>® Catenane links
collapsed globules, reminiscent of randomly branched trees,” show higher elasticity than their covalently bonded counter-
which can be threading each other,"*™" albeit the role of parts,” predestining them for usage in elastomer materials,
threading entanglement has not been fully unraveled yet. exemplified by olympic gels* or slide-ring gels*"* or even in
Arguably, the most prominent consequence of ring topology biological structures such as kinetoplast DNA.”*~** The latter

manifests itself in the dynamics™® and viscoelastic re-
sponse”_21 of the polymer melts. For the former, long linear
chains relax predominantly via one-dimensional diffusion by
reptation”” in a tube along the contour of the chain, while rings
possessing no ends utilize different modes of relaxation.”* For
the latter, and for the case of low-molecular-weight rings, the
stress relaxation modulus of ring polymers exhibits a power law
in a long range of frequencies, with no signs of rubbery plateau,
present for linear chains.**** On the other hand, it has been
recently found that for high-molecular-weight rings, an

are sheets of thousands of catenated DNA rings, resembling
chain-mail armor, naturally occurring in unicellular organisms

Received: June 28, 2023
Revised: ~ September 11, 2023
Published: October 3, 2023

© 2023 The Authors. Published b
Ameericl;n %ﬁemlilcaissgcietz https://doi.org/10.1021/acs.macromol.3c01267

W ACS PUb| IcatIOI’]S 8168 Macromolecules 2023, 56, 8168—8182


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Roman+Stan%CC%8Co"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christos+N.+Likos"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sergei+A.+Egorov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.macromol.3c01267&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c01267?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c01267?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c01267?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c01267?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c01267?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/mamobx/56/20?ref=pdf
https://pubs.acs.org/toc/mamobx/56/20?ref=pdf
https://pubs.acs.org/toc/mamobx/56/20?ref=pdf
https://pubs.acs.org/toc/mamobx/56/20?ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.macromol.3c01267?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org/Macromolecules?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Macromolecules

pubs.acs.org/Macromolecules

of the class Kinetoplastida. Recent experiments suggest that
when digesting the kinetoplasts using enzymes cutting the
DNA rings, one first breaks the percolation in the interior of
the sheet and is left with the periphery, now being a ring of
rings.*”>" Better understanding of such poly[n]catenanes,”">*
either cyclic or open, presents one of the main challenges for
the topological soft materials. Simulations predict that the
structure of poly[n]catenanes in melts is similar to linear
chains in the limit of long time scales and length scales but
shows a different behavior at the shorter scales,’>** with a
similar relaxation time decoupling being present also in dilute
solutions.” >’ However, experimental verifications for some of
the simulation predictions are at the moment missing, mainly
due to the lack of high-yield synthetic methods leading to high-
molar-mass poly[n]catenanes.”®

Similarly to poly[n]catenanes, synthesis of ring polymers is
accompanied by challenges,” most notably possible contam-
ination of samples of rings by linear chains. It is worth
mentioning in this context that metastable polymer chemistry
rules out the existence of linear chains in a ring solution or
melt, as cleavage of a ring rapidly leads to a degradation to its
monomers.””*” It has been shown that even an addition of ~1
wt % of linear counterparts can alter the dynamics of ring melt,
reintroducing the elastic plateau in the stress relaxation
functions.”* In such blends, chains can thread through the
rings, restricting their lateral modes, decreasing their diffusion
coefficient, while significantly increasing the zero-shear
viscosity.”’ To understand the interplay of ring and chains, a
great variety of model systems of blends have been
devised®' ™" and explored from the standpoint of rheology.
However, research in the direction of thermodynamics and
structure is mostly missing. Under which conditions are the
ring and chains miscible, hence forming stable equilibrium
blends? Recently, it has been shown, using molecular dynamics
and relating structure factor to y-parameter, that linear/ring
melts of chemically similar polymers should be more miscible
than ring/ring or linear/linear counterparts.”® This has been
explained in terms of topological solubilization, arguing that
chain—ring threading can increase the conformational entropy
of rings. Other theoretical approaches to assessing thermody-
namics stability present extensions of Flory—Huggins theory,””
including additional contributions for topological volume,”*”!
all of which focus mainly on large N limit. In our study,
however, inspired by the catenane systems, we focus mainly on
shorter rings, which should have a limited window of
miscibility with chains, even if the two have chemical
dissimilarity. Specifically, we vary two parameters of the
rings, quality of the solvent’>”* and backbone stiffness,”® both
of which are known to affect the phase behavior of pure linear
chains.””*

In the current work, we present an approach, different to the
ones listed above, based on classical density functional theory
(DFT), similar to our previous works.””’® We describe blends
of linear polymers with ring polymer and catenanes as mixtures
of two types of blobs representing a subsection of the chain
and an individual ring, respectively. First, we use monomer-
resolved molecular dynamics to derive effective potentials for
all combinations of blob types, hence turning the phase of
polymers into a binary liquid of soft particles. Within the
mean-field approximation, we use DFT to calculate phase
diagrams, structure of bulk phases, and interfaces between
them, all of the above for a set of different polymer flexibilities
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and solvent quality, while simultaneously assessing validity of
used approximations.

2. RESULTS AND DISCUSSION

2.1. Microscopic Models and Coarse-Graining. As the
complexity of ring-linear and catenane-linear mixtures is
enormous, our purpose is to coarse-grain the mixtures by
modeling both linear chains and rings as blobs represented by
their centers of mass. Accordingly, in simple ring-linear
mixtures, each linear chain and each ring will be represented
by a single effective coordinate each: their corresponding
center of mass. We index chain blobs as (1) and ring blobs as
(2), the former blobs consisting of N; = 50 monomers and the
latter ones of N, = 100 monomers, resulting in blobs of similar
spatial extent. For mixtures of long chains and catenanes of
similar size, on the other hand, each long molecule will be
represented by an array of M; connected blobs, i € {1, 2}, in
the spirit of the previously employed multiblob representations
of polymers,”’ ™" extended now to polycatenanes. We will
consider only moderate values of M; in what follows, whereby
M, = M, = 1 corresponds to linear-ring mixtures and M, > 1
corresponds to linear-catenane blends.

The quantities of central importance are the pairwise
effective potentials, Vi;(r), Vi,(r), and Vy,(r), between the
various blobs, entering the theoretical analysis employed
below. For the underlying monomer-resolved model, we
consider a linear chain of length N; = 50 monomers and an
unknotted ring of length N, = 100 monomers, both being
modeled by means of a standard bead—spring coarse-grained
polymer model.”” All monomers are represented by point
particles interacting with the nonbonded potential Uii-(s),
similar to the one introduced by Weeks, Chandler, and
Andersen (WCA)®»**

2 (o)
4e (—) - (—) +e(l -4 s< 26
s

N

s> 2%

(1)

where s is the distance between the two monomers, i, j € {1,
2} and we set the length scale 6 = 1 and energy scale € = kg T =
1/p = 1, respectively. The parameter 4; controls the depth of
the attractive well of the potentials. For the interactions
between monomers in the chain and also those between chain
and ring monomers, they are set to 4;; = 4;;, = 0, thereby
corresponding to the purely repulsive WCA interaction and
modeling athermal solvent conditions. In general, however, the
chemistry of the ring and chain monomers can be different. To
explore the effect of worsening solvent quality for the ring
monomers on the effective ring—ring and ring—chain
interactions, we allow for nonvanishing attractive tails in the
ring-intermonomer potential Uy,(s), using 4,, € {0.0, 0.1, 0.2,
0.3}, which nevertheless still correspond to good solvent
conditions.*> Finally, we note that we use a truncated and
shifted version of the potential of eq 1, with a cutoff of 2.56.

Connectivity of successive monomers in the polymer is
governed by finitely extensible nonlinear elastic (FENE)
potential

https://doi.org/10.1021/acs.macromol.3c01267
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Table 1. Table Listing the Parameters of the Studied Systems”

Ubend(¢) ny(s) Vu(") Vlz(") sz(’)
case pry P, Ay A A Pen R /o Pen Rp/o Pen Ry/o ab
A 0 0 0.0 0.0 0.1 3.14 5.55 3.89 6.73 5.43 6.69 1.321
B 0 0 0.0 0.0 0.2 3.14 5.55 4.29 6.34 4.86 6.25 1.536
C 0 S 0.0 0.0 0.0 3.14 5.55 2.07 9.07 327 9.74 1.212
D 0 10 0.0 0.0 0.3 3.14 5.55 1.79 9.40 1.07 11.03 2.340

“Stiffness of chain (1), fk;, and ring (2), fk,, depth of the interaction well between monomeric Uj for chain—chain, 4,;; chain—ring, 4,,; and ring—
ring, 4,,, followed by the fitted parameters of the resultant effective potential (see eq 6 and Figure 2) and mixing criterion ab (see eq 18).

A

& &
Loy

B

LA

AL

Figure 1. Representative snapshots of monomer-resolved systems at approximately vanishing center-of-mass separation, the coding (A—D)
corresponding to the four selected cases from Table 1. For each of the four triplets, the left panel shows typical conformations of two rings, which
are rendered in slightly different shades of color and glossiness for better visibility. The middle panels show conformations between chain (black)

and ring and the right panel conformations of two chains.

2
Uene(s) = _%KFENEROZ Inf1 — (i]
0 ()
where Kpgyg = 30kgT/6” and R, = 1.50. The combined
potential well of the above two potentials gives rise to
uncrossable bonds of mean lengths of (I) ~ 0.96¢. Finally, the
chains are fully flexible (k; = 0), whereas for rings we employ a
harmonic cosine potential Upe,(¢h) acting on the angle ¢
between two successive bonds, emulating bending stiffness:

Upena(@) = k(1 — cos )} (3)

Here, fik, € {0, S, 10} is the bending spring constant and ¢ is
the instantaneous angle between consecutive bond vectors.
The above bending constant translates to persistence lengths
Lee/ 1) € {0, 3.4, 49} or Flory ratios C,, € {1.0, 6.6, 9.4},
respectively, as detailed in ref 86

Ultimately, our model has two free parameters which we
change: the stiffness of the ring and the strength of the
attractive interaction of ring—ring monomers. We select four
specific points in this two-dimensional parameter space, as
listed in Table 1. The choice of this particular set of parameters
is deliberate since they lead to macrophase separation in the
realm of our theoretical approach, indicated by the fact that the
product ab > 1 in eq 18, as we will expound later. We also tried
many different parameter combinations, summarized in Table
S1 in the Supporting Information (SI).

To determine the effective potentials V;(r) between the
centers of mass of the blobs for each of the four cases A, B, C,
and D, we independently constructed the three following
systems: one with two chains, one with two rings, and finally a
system with one chain and one ring as depicted in Figure 1.
Each system is placed in a cubic simulation cell of size L =

8170

1500, assuring that a macromolecule does not interact with
itself through the periodic boundary conditions. For each of
the systems mentioned above, we applied a biasing (umbrella)
potential

1 2
U, (r) = =K. . (r — 7
blas( ) 2 blas( 0) (4)

between the centers of mass of the two macromolecules, where
Kpias = 2.5k T/6%, and we carried out independent simulation
for each of r,/c € {0.0, 0.5, 1.0, --, 30.0}; characteristic
snapshots of the interacting polymers for ry = 0 are shown in
Figure 1. The system was evolved using the LAMMPS®’
implementation of Langevin dynamics with friction coefficient
y = 1/7 and time step &t = 0.017, where 7 = (6> M,/kzT)"* = 1
is the unit of time, where M, = 1 is mass of monomer. A typical
run was 5 X 10°7 long, and the simulations were analyzed usin
the weighed histogram analysis method (WHAM),**®
removing the bias and yielding the pair correlation function
g;i(r) between the two macromolecules in the high dilution
limit, which can be related to the effective potential as

PY(r) = —Inlg ()]

(5)

For more details on the procedure and our workflow, we refer
the reader to our previous publications.*>*°~ Finally, the
effective potentials obtained from the monomer-resolved
simulations were fitted using the generalized exponential
model (GEM)

r

Y = &yexp| - | -
y (6)
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Figure 2. Effective isotropic potentials between two rings (22), two chains (11), and ring and chain (12) as a function of separation between the
two molecules. The labels (A—D) on the panels correspond to the four selected cases from Table 1. Points were obtained by monomer-resolved
simulations, and lines are fit using eq 6. Distance is normalized by the characteristic length scale of the chain—chain interaction, R;;. Analogous
figures for additional combinations of parameters can be found in Figure S1 in the SL

where ¢; and R;; are fittable parameters setting the energy scale
and length scale, respectively, and m;; = 2, m;, = 3, and m,, =
4 as in ref 94. The resulting values of the parameters ¢; and R;
are summarized in Table 1.

Overall, the derived potentials displayed in Figure 2 show
satisfactory agreement between the monomer-resolved poten-
tials and the GEM forms for all four cases. The effective
interaction between the two chains is effectively a Gaussian
centered at zero separation,”””® while rings exhibit a
pronounced plateau at r — 0 as established earlier.”’ = The
two effective interactions V,(r) and V,,(r) offer us valuable
insights into the ways in which the physical (4,,) and chemical
(Bx,) characteristics of the rings affect the outcomes.
Comparing models (A) and (B) in Figure 2(A),2(B), we see
that worsening the solvent quality for the ring beads from 4,, =
0.1 to 4, = 0.2 has two antagonistic effects. On the one hand,
the inter-ring potential V,,(r) becomes weaker, as the
enhanced propensity of the monomers to attract counteracts
the steric entropy loss at close separations. On the other hand,
the ring-linear potential V,(r) becomes stronger since now the
internal monomer density of the shrunken ring grows and with
it the entropic penalty of placing the centers of mass of the ring
and the chain on top of each other. More quantitatively, we
find fV,,(0) = 5.4 for A, = 0.1 and SV,,(0) = 4.9 for Ay, =
0.2, in comparison to fV,,(0) = 6.0, observed for the rings
with A,, = 0 in ref 99. Turning our attention to the effect of
stiffness, which grows from pk, = S for the system C, Figure
2(C), to Pk, = 10 for the system D, Figure 2(D), we see that in
this case both V,,(r) and V,(r) become weaker, as the
increased bending rigidity opens the rings up and creates more
space for the penetration of other rings or linear chains,
thereby reducing the associated entropic overlap penalty. In
Figure S1 of the SI, we show the effective potentials obtained

for a variety of other parameter combinations, shown in Table
SL.

2.2. Density Functional Theory. Our theoretical
investigations of the bulk, structural, and interfacial properties
of linear-ring and linear-catenane mixtures are based on density
functional theory (DFT). The key quantity in this formalism is
the grand potential100 Q[p,, p,], which in the present case is a
functional of the (generally inhomogeneous) densities of the
two components, p;(r) and p,(r). Here, a component has the
meaning of a coarse-grained blob describing either a linear
chain or a ring, ie., precisely the quantities for which we
derived the effective potentials V;(r) in the preceding section.
The grand potential contains contributions from the ideal free
energy, which quantify the entropy loss for any deviation of the
densities from the homogeneous profile, the excess free energy,
which contains all energy and entropy contributions due to
interblob interactions, the influence of external potentials
Wi(r) such as walls or gravity, and the chemical potentials y, i
€ {1, 2} of the two species. For the system at hand, we employ
the grand potential given by the expression

pQIp, p,1 = Z fd%%lln(ﬂ;\(;)/\f] - 1}

+ g > f f &Erd’ g () () (I — £1)

i=1 j=1

+8 % [Em@m© - ) .

where A, is the de Broglie wavelength of species i. The grand
potential of eq 7 involves certain approximations, which we
discuss below.

https://doi.org/10.1021/acs.macromol.3c01267
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Whereas the ideal free-energy contribution (first term on the
right-hand side of eq 7) is exact, the functional of eq 7 features
an excess free energy (second term on the right-hand side)
which is bilinear in the density fields with an integration kernel
given solely by the effective interactions V;(r — r'l). This
mean-field/random-phase approximation for the excess free
energy has been demonstrated to be very accurate for soft
interactions that do not diverge at the origin both for one-
component systems'’' ~'% and for binary mixtures.”"'*%'%
The far-reaching theoretical predictions of this form regarding
the self-assembly of such ultrasoft-particle systems'*>'*® have
been recently confirmed experimentally."®”

In writing down the excess free energy in eq 7 and applying
it at all polymer densities in what follows, we made the
assumption that the pairwise effective interactions remain valid
in the domains in which the relevant phenomena (such as
phase separation) take place. Although this is an approx-
imation, it is not a drastic one. Indeed, the validity of the ring—
ring effective potentials was tested in our previous studies,
where we compared the resulting pair correlation functions of
the effective model with fully monomer-resolved simulations in
solutions in a broad range of densities. We found out that for
flexible rings,”” the effective potentials are quite accurate up to
concentrations of p/p* < 4, where p* is the overlap
concentration, and for stiff ringsgo up to p/p* < 3, which
can be pushed even to p/p* < S, when using anisotropic
effective potentials.”" Similarly, for the chain—chain case,”® the
effective potentials are accurate up to several overlap
concentrations. While we have not tested the accuracy of the
mixed ring—chain potentials, we expect them to have the same
range of accuracy as those of the above pure solutions. Taking
the condition p*R}, = 1 as an estimate for the polymer overlap
density p* in the solution, it can be see that the critical points
as well as large parts of the binodals and spinodals in Figure 4
reside below p*, where the effective potentials are indeed
accurate. This condition is fulfilled even more strongly for the
phase diagrams of the chain-catenane micelles shown in Figure
S. As regards ways to accurately deal with even higher
densities, the appropriate technique is to follow a multiblob
coarse-graining, along the lines of, e.g, refs 77,80

An additional approximation involved in the grand potential
form of eq 7 concerns the treatment of the connectivity of
linear chains consisting of M, linear blobs and/or catenanes
consisting of M, ring blobs. Whereas this feature is taken into
account in the ideal part of the Helmholtz free energy in which
the quantities p;(r)/M, appear, it is absent in the excess term,
in which only interactions of blobs with neighboring ones show
up, independent of whether these blobs are connected or not.
To test the accuracy of this approximation, we compare here
its predictions for the binary mixture equation of state with the
corresponding results of the Polymer Reference Interaction
Site Model (PRISM) integral equation theory,**'*® where the
Ornstein—Zernike (OZ) equation is solved in conjunction
with an (approximate) closure relation, and the chain
connectivity is explicitly taken into account via the intra-
molecular pair correlation functions w;(k) in reciprocal space,
as defined below.

In PRISM theory, each polymer in a concentrated solution is
considered as a sequence of interacting sites in a spirit similar
to that of interacting particles (monomers) for the case of
simple liquids. For binary polymer blends, one introduces the
radial distribution functions gtj(r) and the total correlation
functions hy(r) = g;(r) — 1, i, j € {1, 2}. Chain connectivity is

taken into account by the intramolecular pair correlation

functions wy(r), i € {1, 2} (for homopolymers, the w,-j(r)

functions with i # j vanish). The OZ equation takes in Fourier
. 84,108

space a matrix form that reads as

H(k) = W(K)C(K)[W (k) + H(k)] (8)

where H(k) and C(k) are the matrices that are constructed
from the Fourier transforms of the total correlation functions
hj(r) and the direct correlation functions c(r), respectively.
The diagonal matrix W]—(k) = piﬁ/ﬁ(k)ﬁij contains the Fourier
transforms of the intramolecular pair correlation functions
w;(r), for which we use the freely jointed chain model #,(k) =
sin(R;k)/(Rjk).

In order to solve the system of OZ equations given in the
matrix form by eq 8, one needs to supplement them with the
corresponding closure relations®* given by

= pV(r) + }’i,-(f) + b(r)] -1 9)

where y;(r) = h;(r) — ¢;(r) is the indirect correlation function
and b,-j(r) is the bridge function. The exact form of the latter is
unknown, and various approximations are available in the
literature.** In the present work, we employ the hypernetted
chain (HNC) closure given by b;(r) = 0. The PRISM integral
equations combined with the HNC closure are solved using
the standard Picard iteration procedure.'” The real-space grid
is discretized with a spacing of Ar = 0.010, and 8192 points are
used in performing the Fourier transforms. The tolerance
parameter for the convergence criterion of the Picard iteration
is set to 1077. Having calculated the radial pair distribution
functions g;(r) from PRISM-HNC, the pressure is obtained by
the expression

hij(r) = exp|

2

2
_ pi Zﬂﬂ e 3y
PPorism = ; M T3 ; PP, /(; drr \/}j(r)gij(r)

(10)

the prime denoting the derivative with respect to the argument.
The MFA-DFT expression for the pressure is given later in eq
1S.

The corresponding PRISM and MFA-DFT results for the
dimensionless pressure SPR}, are presented in Figure 3 as a
function of the ring mole fraction x at the overall fixed density
PR}, = 0.025 (with M; = M, = § for the system D), the overall
agreement is very good and therefore it justifies the
approximate form of DFT of eq 7. A major advantage the

0.0200
—— PRISM
0.0075~ . \ipA-DFT

0.0150~

o

0.0125-

Ut

BPRY,

0.0100¢

0.0075~

00 02 04 06 08 10
X

Figure 3. Total pressure of polycatenane (M, = 5) and long-chain
(M, = §) mixture as a function of ring fraction at total density pR}, =
0.025 plotted for the system D from Table 1.
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latter has over PRISM is that it is a general approach valid for
both homogeneous and inhomogeneous mixtures, and thus, it
allows for the determination of thermodynamic, structural, and
interfacial properties all within the same, self-consistent
theoretical framework.

2.3. Phase Behavior. The inhomogeneous DFT method-
ology discussed in the previous sections can be readily adapted
to study the bulk phase behavior of ring—chain binary
mixtures. To this end, one simply replaces the inhomogeneous
densities in eq 7 for the grand potential by the corresponding
bulk values p, i € {1, 2}. Carrying out the trivial spatial
integrals on the first and second terms on the right-hand side
of eq 7, we readily obtain the ideal (f;;) and excess (fi)
Helmbholtz free energies per unit volume V as

B = Y Lol 22 <1
W \Pr Py = 0 M o
and
ﬂ 2 2 R
Hoclon ) = 5 20 2,09V(0)
i=1j=1 (12)

where \A/',-j(O) is the zero-wavevector Fourier component of the
interaction pair potential V,(r), given by™*

‘711(0) = /d3r (r) = —71'8 R3F[3 —;mu]

Y

(13)

and I'(x) denotes the y function. From the above, one obtains
the chemical potentials for the two components as follows

1
Pu, = [ ’ A3] PV (0)
M, Z (14)
whereas the pressure of the system is given by
2, ; 2
ZEDIvEEDIDWANIO
i=1 i=1 j=1 (15)

Possible phase transitions within the mixture are most
efficiently identified by performing a Legendre transform from
the Helmholtz free energy, whose natural variables are
temperature, volume, and the number of particles N;, N, of
the two species, to the Gibbs free energy per particle g(x, P, T)
which has the mixture composition x = N,/N, (N = N, + N,),
pressure, and temperature as its natural variables. Considering
the curves g(x, P, T) vs x« € [0, 1] for fixed T along isobars,
phase separation is signaled by the existence of nonconvex
parts on the same. Convexity is restored by performing the
common tangent construction, resulting in a straight-line
envelope connecting phases with compositions x' and x'" at the
end points of the common tangent. It is straightforward to
show that the two resulting phases have common chemical
potentials ! = ul', i € {1, 2}, for each component of the
mixture, and since they exist on an isobar and for a common
temperature, they satisfy all requirements for macroscopic
phase coexistence, i.e., they lie on the binodal.

The occurrence of phase coexistence is equivalent to the
appearance of the so-called spinodal line, on which g,.(x, P, T)
= 0, each subscript denoting a derivative. The Gibbs free
energy per particle cannot be cast in a closed form but we can
work instead with the Helmholtz free energy per particle, f(x, v,
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T), expressed as a function of the composition x, the specific
volume v = V/N, and the temperature T, which is easily
obtainable in the closed form from eqs 11 and12 as f = v(fiy +

fuxe), also expressing p; = (1 — x)/v and p, = «/v. In this
representation, the spinodal line of the binary mixture takes the

form”o’[“
2% \( 327 27z \?
IINEL) (2L =
dx* )\ ov? Oxdv (16)

Using the expressions in eqs 11 and 12, we obtain the spinodal
line as

- Mz/)z/ﬂ?zz(o)
(17)

Introducing two dimensionless variables { = M,p,V,,(0) and
n = M,p,fiV,,(0) and two dimensionless ratios

M1M2/}1/)2/}2[‘?1?;(0) - ‘ZI(O)VZZ(O)] - Mlﬂl/}vll(o)

-1=0

Via(0)  _ Viy(0)
Vi,(0)’ 3,(0) (18)

the equation for the spinodal takes the following simple form
(+n+1=(ab- 1)y (19)

Since the quantities { and # are non-negative, it is evident that
eq 19 can only be satisfied if ab > 1, justifying our choice of
model systems A, B, C, and D to study macrophase separation.

For given values of a and b, the above equations define a
universal curve for all values of the two components chain
lengths M, and M,. However, the location of the critical point
(¢o 1) for a binary mixture with a given ratio of chain lengths
m = M,/M, does depend on m since

2 Jab*(a + 3/m) 1—ab/3
(==—"—"cos(y/3) + ——
3 ab — 1 ab — 1 (20)
where
- _1
cosy = 2 an
with
B abz[ab(Za +9/m) — 27/m]
B 27(ab — 1) (22)
1 [ab®(a + 3/1')1)]3/2
27 (ab-1)} (23)

The second dimensionless coordinate of the critical point is
given by

L +1
(ab—1),. -1

The above equations show that for given interaction
parameters a and b, the spinodal is a line on the ({, ) plane
that does not depend on m. The location of the critical point
on this spinodal, on the other hand, is affected by
modifications of the ratio m = M,/M, as shown in Figure S2
in the SL

2.3.1. Linear-Ring Mixtures. We start by constructing bulk
phase diagrams of binary mixtures A, B, C, and D (with M, =
M, = 1). As discussed above, binodals are obtained numerically
by equating the pressures (given by eq 15) and chemical

T = (24)
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Figure 4. Phase diagrams for mixtures of linear chains (M, = 1) and rings (M, = 1), plotted on the total density-ring fraction plane, (p, x). The
labels (A—D) on the panels correspond to the four selected cases from Table 1. Solid golden lines represent binodals, and solid black lines
represent spinodals with the critical point highlighted by a black point with white interior. Dashed golden lines are selected tielines, connecting
coexisting points on the binodals. Selected points marked by dark red cross are further explored in Figure 6 and selected tielines highlighted in dark
red are further explored in Figure 8.
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Figure 5. Phase diagrams for mixtures of long chains (M, = 10) and polycatenanes (M, = 20), plotted on the plane spanned by the total blob
density and the fraction of rings, (p, x). The labels A—D on the panels correspond to the four selected cases from Table 1. Solid golden lines
represent binodals, and solid black lines represent spinodals with critical points highlighted by a black point with white interior. Dashed golden lines
correspond to selected tielines, connecting coexisting points on the binodals. Selected points marked by dark red crosses are further explored in
Figure 7.

potentials of both components (given by eq 14) in the two spinodal for a given system meet at the critical point, for which
phases. Spinodals are given analytically in eq 17. Binodal and analytical result was also given above. The resulting phase
8174 https://doi.org/10.1021/acs.macromol.3c01267
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diagrams with binodals, spinodals, and tielines connecting
coexisting points are plotted in Figure 4 in the variables total
(dimensionless) density pRj; vs the ring fraction .

As for all mixtures considered, we have chosen ab > 1, phase
separation always results. The overall density at which phase
separation first sets in correlates with the magnitude of this
product: indeed, the larger ab is, the earlier (in density) a
transition takes place. It can further be seen that as the
intermonomer attractions in the rings become stronger (A
growing as we move from A — B — D), the mixtures become
more susceptible to phase separation, the effect being further
enhanced by the increase of bending rigidity (fk, growing as
we move from A - B — C — D). The tielines are almost
horizontal, signaling that the phase transition is predominantly
a demixing separation between two phases that are, roughly,
equally dense.

2.3.2. Linear-Catenane Mixtures. Here, we focus on binary
mixtures of polycatenanes and long linear polymer chains.
Specifically, we set the length of polycatenane chain to M, =
20, while the linear polymer chain is comprised of 10 blobs: M,
= 10. In terms of the interaction potentials between the blobs,
we consider the same four mixtures A, B, C, and D, as in the
single blob case discussed earlier. The resulting phase diagrams
are plotted in Figure S, in the same variables and with the same
symbols as in Figure 4 for the case where M, = M, = 1. It can
be seen that the same trends also persist for the linear chain-
polycatenane mixtures with the additional feature that now
phase separation sets in at much lower overall densities of the
blobs than in the previous case: polycatenane connectivity and
longer chains enhance the phase separation propensity of the
mixture, which retains its character as a demixing transition:
indeed, the tielines remain also in this case roughly horizontal.
Accordingly, tuning the effective potential between individual
rings and chains and being able to control its characteristics via
solvent quality and rigidity give us flexibility in steering the
macrophase behavior of mixtures of polycatenanes and linear
polymers.

2.4. Correlations and Response Functions. The
minimization of the grand potential with respect to p;(r)
and p,(r) yields equilibrium inhomogeneous density profiles
for the two components. In what follows, we apply the above
general DFT methodology to compute the bulk structural
properties of ring—chain binary mixtures and the interfacial
properties of these mixtures either in the bulk or in contact
with a planar wall.

To characterize the structural properties of the binary
mixture of rings and linear chains (M; = M, = 1), we first
compute the inhomogeneous (spherically symmetric) density
distributions pij(r) of species j around a probe particle of
species i fixed at the origin, which acts as an external potential
V,-j(r) on species j. The minimization of the grand potential
of eq 7 gives the following result

V() + D (Ap*W)(r)

k=1

py(r) = pexpy — BM;

(25)

where Ap,(r') = py(r') — pu(r' = o0) and the star denotes
the three-dimensional convolution

(B V)(r) = [ & Bp(r)Viie - 1) 6)

Equation 25 is solved iteratively on a uniform grid with the
spacing Ar = 0.02R;;, with numerical integration performed
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using 2-point Gaussian quadrature and employing a simple
Picard iterative procedure. The boundary condition for the
value of the density profile of species j, p;(r), far away from the
source particle of type i is set to the corresponding bulk partial
density p;.

Using the standard Percus identity p;(r) = p;g;(r), we obtain
the radial distribution functions gij(r) between blobs i and j, as
well as the corresponding total pair correlation functions h;(r)
= g,-j(r)—l. We consider the Fourier space representation of the

one-particle density of species (blob) v, p*)(k), given by

v

P () = 3 exp(ikr,)

p=1 (27)

where N, is the number of particles (blobs) of species v and r,
is the position of particle p of that species. The response
functions S,-j(k), i, j =1, 2 are defined as
1 A(i (i
S;(k) PPV ( - K))

L]

(28)

and are related to the aforementioned pair correlation
functions h;(r) via

S,(k) = 8, + JFmp f dr exp( — ik-r)h(r) 09)
where x;; = N, /N is the number fraction of species i, j.

In the vicinity of phase transitions for binary mixtures, it is
relevant to explore which is the fluctuating quantity that reacts
more sensitively to the incipient instability. In particular, the
issue is to distinguish between particle number fluctuations and
composition fluctuations, which are embodied in the long-
wavelength limit of the number—number and concentration—
concentration response functions S, (k) and S, (k), which are
defined by eqs 30 and 31, respectively

§,(k) = %([ﬁ“)(k) + P )]

PV (= k) + 5P (=K (30)
and
8.0 = =210 = (W]
[, ( = k) — %P (= K1) G1)

These response functions are related to the S(k) via''>'"*
S, (k) = x,8,,(k) + 2 /2%, Sy (k) + x,S,,(k)
and
S.(k) = 2128, (k) — 2(xx,)> %S, (k) + xlzxZSZZ(k)( )
33

We emphasize that here we call “species” the linear or ring
blobs. For linear-ring mixtures (M; = M, = 1), they do indeed
coincide with the individual polymers in solutions, but for
linear-catenane mixtures (M, > 1, M, > 1), they do not. It is for

(32)

this purpose that we call the quantities S/w(k) with the generic

name “response functions” to take both cases into consid-
eration, since they are indeed expressing the response of some
quantity in the system to an external potential caused by a blob
at the origin. For M, = M, = 1, they coincide with the structure
factors™"'>''* S, (k) and we use the name and symbol for

https://doi.org/10.1021/acs.macromol.3c01267
Macromolecules 2023, 56, 8168—8182


pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.3c01267?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Macromolecules

pubs.acs.org/Macromolecules

30
N pR3, = 0.525 .
5l
= —02—04— 06 0.8
| 20-
= __1.5-
& 15 2100 Aee
10 § ‘
0 50 0 10 20
kR
0 :
0 9 4 6 8 10
kR
30
]pl?% = 0.625 -
25° '
=7 — 02— 04— 06
|
~ 0%
=2
= _5f |
«0 0 10 20
kR
6 8 10
kR

30

. pR3, =0.375 "
= B] —02—04—06 08
| 20
= —1.0- =
8 15 = /
= s
0.
=10 »
O ! Il
9 5\ 0 10 20
N\ kR,
% 2 i 6 8 10
0,
) pR3, = 0.160 .
]
<% [P —02—04-06 08
| 20
— —
E 15 =0 [
(/) =4
=90 0-5
O Il
o 0 10 20
L kR
% 2 i 6 8 10
kR

Figure 6. Concentration—concentration structure factors S..(k) from eq 31 (main plots) and the number—number structure factors S,,(k) from eq
30 (insets) for mixtures of linear chains (M, = 1) and rings (M, = 1). The labels (A—D) on the panels correspond to the four selected cases from
Table 1. We show the functions for various ring fractions at selected densities and ring fractions, corresponding to the dark red crosses in Figure 4.

225
PR3, = 0.040

225
PR3, =0.028

200 200
S —02—04—06 0.8 8 —02—04—06 08
| 1.75) | 1.75-
! — N\~
= Al_o,/\,\-, = 1.0 /
L ~ L ~e
E 150 < E 150 %
=1 o / L1950 Q’Or/
3 | . 3 5! .
S _—0 k%:i 20 1.00—\ 0 k}glfif 20
0-75 ) A 6 8 10 0-75 P 4 6 8 10
kPLH ]lel
2.25 225
pR3, = 0.025 pR3, =0.010 "
200 200
5 —02—04—06 08 8 D] —02—04—06 08
| 1.75- i, | 1.75
- 15 = —~1.00- ¥
=0 =2 =0 =2 /
il.do \EIO— "‘bA747 iloo \é /
=195 ) =195 S 0.757
o 05 10 20 o 0 10 20
1.00- S R 100~ N o
0-75 > 4 6 8 10 0-75 P 4 6 8 10
lel lel

Figure 7. Concentration—concentration response functions Q. (k) and their number—number counterparts Q,,(k) from eq 30 (insets), for
mixtures of long linear chains (M, = 10) and polycatenanes (M, = 20). The labels (A—D) on the panels correspond to the four selected cases from
Table 1. We show the functions for various ring fractions at selected densities and ring fractions, corresponding to the dark red crosses in Figure S.

this particular case, whereas we employ the symbol Q,, (k) for
the case M, > 1, M, > 1 in what follows.

We have evaluated the above-mentioned correlation
functions in r-space and the concomitant response functions
in k-space for all points marked with red crosses in Figures 4
and S. For ring—chain binary mixtures, the concentration—
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concentration structure factors S (k) for the binary mixtures A,
B, C, and D are presented in Figure 6, with insets showing the
results for the number—number S,,(k). In all cases, it is the
former quantity that shows a strong response at the long-
wavelength limit (k — 0), whereas the latter remains small.
This is a clear signal that the phase transition is of the demixing
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Figure 8. Interface density profiles for solutions of linear chains (M, = 1) and rings (M, = 1) as a function of the position z vertical to the interface.
The labels (A—D) on the panels correspond to the four selected cases from Table 1. We show the profiles for different values of the pressure, as
indicated in the legends, corresponding to the dark red tielines from Figure 4. Dashed curves denote p,(z) and solid ones p,(z). The boundary
conditions are chosen in such a way that we have the coexisting phase of the left end point of the tieline at z — +o0 and that of the right end point

at z - —oo.

type since high values of S_.(k — 0) point to strongly enhanced
long-wavelength concentration fluctuations, whereas the
corresponding number fluctuations remain suppressed. An
exception is the second point of system D, marked x = 0.4,
which lies very close to the critical point of the system, on
which all response functions diverge.

Similar results are obtained for the response functions Q..(k)
and Q,,,(k) of the chain-catenane mixtures shown in Figure 7.
As the points considered on the phase diagram are sufficiently
far removed from the actual critical points of the single blob
mixtures, the low k peaks in S, (k) are much less pronounced
compared to the individual blob case shown in Figure 6.
Moreover, here we also obtain a Q,,(k) response function for
the point marked x = 0.8 of system C, which shows a strong
propensity of the system to modulate with a finite wavenumber
k.. This is the case of a nearby-lying A-line of the catenane,
which signals the tendency of the system to order into a crystal,
and which interferes with the spinodal line of the macrophase
separation, as also found in previous work.'"

2.5. Free Interface. In this section, we restrict ourselves to
linear chain/ring mixtures, ie., M; = M, = 1. The presence of
two coexisting phases on the two sides of the binodals implies
that a free interface between the two will form when the two
chemical potentials attain the appropriate values. Let therefore
I and II denote the two coexisting phases with partial densities
(pl, p5) and (p}, p3), respectively. The density profiles
resulting into a free interface can be calculated by minimizing
the grand potential, eq 7 under the boundary conditions

lim p,(z) = p/

it (34)
. 1
Jim £(2) = p, (35)

8177

1. — 11
tim (&) =1 (36)

z

1. — I
lim 72 =p, (37)

z

i.e., forcing the bulk phase I at z - — oo and bulk phase II at z
— +oo. Defining fi; = y; — 31n(A;/Ry;), the self-consistent
equations for the density profiles p,(z) read as

lp R + [ SR = 1) + 2y & PVle = )]

= pm, (38)
Inlp, R + [ €10, BVile = ¥) + p,()BVislr = )]
= /m, (39)

To determine the free interfaces, eqs 38 and 39 are solved
iteratively, starting from a smooth function (e.g, a hyperbolic
tangent form) fulfilling the boundary conditions for any chosen
binodal and iterated until convergence is achieved. Results are
shown in Figure 8 for selected binodals in the systems A—D. In
all cases, the profiles are monotonic, i.e., devoid of the strong
correlation peaks usual for steeply diverging interaction
potentials, since the effective potentials at hand are soft and
penetrable. An exception to this is the ring profiles for the
higher pressure values in panel C. There, the ring-rich phase
displays weak oscillations indicative of the nearby-lying A-line
of species 2, as mentioned also above for the response
functions of the same.

As, evidently, the density profiles only depend on the
direction z perpendicular to the planar, free interface, the grand
potential in this case takes the form Q, = L* [ dz w,,(z), with
the area L? of the system perpendicular to the interface and the
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liquid—vapor grand potential density w;,(z). The liquid—vapor
interfacial tension y;, results as the integrated difference
between ®;,(z) and the bulk grand potential density
w,=8Q,/V =—Pas

n= [l - o)

2.6. Wetting of a Planar Wall. As a second application of
the inhomogeneous DFT formalism, we will study the wetting
properties of ring—chain binary mixtures (M; = M, = 1) at a
structureless planar wall located in the xy plane. To model the
wall—fluid potentials, we employ the same functional forms as
in earlier study of wetting behavior of soft binary mixtures”*

(40)

(41)

where i = {1, 2} and we set f®, = 1, ,; = R}, and 4, = Ry,,
while S®, (the dimensionless strength of the ring—wall
interaction) is varied in order to control the wetting behavior
of the mixture at the wall. As the wall—fluid potentials are only
functions of distance z from the wall, the same applies to the
equilibrium density profiles of p;(z) of both components. By
minimizing #Q and replacing the chemical potentials y; in
favor of the bulk densities p; = p,(z = ), one obtains the
equilibrium density profiles in inhomogeneous binary
mixtures’

p(z) = pexp| — pWi(z) —

/ dz Ap(z )qﬁ (G zl)l

j=
(42)

where Ap,(z) = pi(z) — pi(z = ) and

¢,(l) = p f dEEV(8) = 2ne, —”r[— Izlm"]
i ™My (43)

y

with ['(a, x) being the incomplete y function. Then, eq 42 is
solved iteratively on a uniform grid with the spacing Az =
0.02R;;, with numerical integration performed using 2-point
Gaussian quadrature and employing a simple Picard iterative
procedure.

For studying the wetting behavior, the DFT calculations are
performed at coexistence, where one of the two coexisting
phases (which we arbitrarily call “liquid” phase) is rich in the
linear polymers and poor in ring ones, while the other
(“vapor”phase) is rich in the ring polymers and poor in linear
ones. Accordingly, by scanning the parameter f®, from low to
high values, i.e., making the wall—ring potential progressively
more repulsive, one can go from “drying” to “wetting” as the
“liquid” (ring-poor phase) intervenes between wall and vapor
to keep the ring-poor phase closer to the wall and the ring-rich
“vapor” phase away from it.

The key observable for studying the wetting behavior is the
contact angle @ given by Young’s equation' '

ysv B ysl
Ny

cos @ =
(44)

where 7, 7q, and ¥, are the interfacial tensions between the
solid and the “vapor” phase, between the solid and the “liquid”
phase, and between “liquid” and “vapor” phases. In order to
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calculate the two solid—fluid tensions, one sets the boundary
condition far away from the wall to the corresponding bulk
densities and computes the inhomogeneous density profiles
pi(z) from DFT as described above. From these density
profiles and eq 7, one can readily compute the grand potential
density fw(z), which yields the solid—fluid interfacial tension

}/Sf = Aoo dZ(CUsf(Z) - wb)

where f = [, v is the subscript and @, is the bulk value of the
grand potential density. The analogous expression holding for
the liquid—vapor interfacial tension ¥y, is given in eq 40.

For studying the wetting behavior at a planar wall, DFT
calculations are performed for a single chosen pressure for each
of the four binary mixtures. Specifically, we have selected P =
2P_ for the systems A, B, and D, and P = 1.4P_ for the system C.
For these pressures, we compute the liquid—vapor interfacial
tension y;, from eq 40 and the solid—liquid interfacial tension
74 from eq 45, with analogous equation used to compute the
solid—vapor interfacial tension y,,. The latter two calculations
are performed for a range of wall-ring interaction strength
p®,. Having obtained the three interfacial tensions, we
computed the contact angle from eq 44; the corresponding
results are shown in Figure 9 as a function of f®,. One sees

(45)

O QW

1.0 15 2.0

0.5

[R5

Figure 9. Cosine of the contact angle between a planar wall and a
liquid drop (linear-chain-rich phase) in coexistence with the vapor
(ring-polymer-rich phase), as a function of the strength f®, of the
wall—ring interaction for systems A, B, C, and D as indicated in the
legend. The corresponding pressures are A: 2P ; B: 2P; C: 1.4P_; and
D: 2P,, where P denotes the pressure at the critical point.

that for all four systems, the corresponding lines cross the line
cos =1 at a finite angle, indicating the occurrence of a first-
order wetting transition.'*’

3. CONCLUSIONS

We have applied coarse-graining techniques and density
functional theory to examine the phase behavior and bulk
and interfacial structures of binary mixtures between linear
chains and ring polymers as well as of mixtures of linear chains
and polycatenanes. For the latter case, the polycatenane has
been described once again in a coarse-grained fashion as a
succession of ring blobs, without further specification of the
links between the same; in other words, we have ignored any
difference between rings connected to one another by
mechanical Hopf links (i.e., true polycatenanes) and
successions of rings bonded with one another via chemical
bonds. Recent work has shown that there are differences
between the two regarding the values of the resulting single-
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molecule elastic modulus® but we do not anticipate any
serious effect of the latter on the phase behavior and in
particular on the demixing propensity of polycatenanes and
linear chains.

As a general trend, a worsening solvent quality for the ring
blobs leads to a tendency for a demixing transition between the
linear and the ring components, showing the same trend for
the corresponding catenanes of rings with chains. On the other
hand, increasing the stiffness of the ring induces no clear,
monotonic trend on the demixing propensity, as the net effect
depends on a combination of solvent quality and ring stiffness
in a nontrivial way. Nevertheless, our theory allows for a clear
prediction of the phase behavior on the basis of the three
effective interactions V(r), which lead to the determination of
the quantities a and b of eq 18: if the product ab > 1, demixing
will occur, but if ab < 1, the system will remain mixed at all
densities.

Although the topology of the rings does enter the formalism
indirectly through the shape and form of the resulting effective
potentials, at the blob picture, certain important details of the
spatial organization of the system drop out of sight. Such
features are, e.g, the frequency and depth of threadings
between chains and rings, the knotting of the linear chain or
the catenanes, and the effects that these have on the dynamics
and the relaxation of the mixture as well as on the demixing
dynamics of the latter. To illuminate such issues, detailed
computer simulations and experimental investigations are
necessary.
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