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Abstract – We investigate the phase behaviour of binary mixtures consisting of two ultrasoft
species labeled 1 and 2, using the liquid-state theory and the classical density functional theory.
The interaction potentials of the two species belong to different classes of ultrasoft potentials that
display a dramatically different phase behaviour in the pure case: in the pure species-1 system,
there is a maximum freezing temperature and re-entrant melting occurs; in the pure species-2
system, freezing to a cluster-crystal phase, defined by multiple occupancy of each lattice site,
occurs at all temperatures. We examine the phase behaviour in the mixture for different potential
parameters. In some cases we find that the clustering behaviour of species 2 can induce clustering
of species 1 in 2-rich systems. We identify and characterise stable crystal structures and investigate
the effect of a nearby demixing transition on the liquid-solid phase coexistence.

Copyright c© EPLA, 2009

Introduction. – The competition between
macrophase and microphase separation in classical
systems is a common phenomenon that depends deli-
cately on the details of the interparticle interactions. The
question arises both in the context of one-component
systems and in that of binary mixtures. In the former
case, examples are offered by colloidal particles that entail
a short-range attraction and a long-range repulsion [1],
the former being caused by, e.g., depletion effects due to
added polymer chains and the latter by the presence of
residual charges, screened by counterions and salt [2–12].
In the above works, it has been demonstrated that,
depending on the range and strength of the attractive and
repulsive parts, the liquid-gas binodal can be completely
suppressed, giving rise to the formation of clusters in
an otherwise homogeneous fluid. Even in the complete
absence of long-range repulsions, macrophase separation
can be rendered metastable with respect to sublimation,
provided the attraction range is short enough [13–18].
Block coploymer solutions are another example in which
the competition between antagonistic, attractive and
repulsive forces, can tip the scales from macrophase
separation to micelle formation, depending on the relative
lengths of the blocks and the polymer architecture [19–22].

(a)E-mail: overduin@thphy.uni-duesseldorf.de

For binary mixtures, the situation is richer since
there are now three interaction potentials at play. For
hard-sphere mixtures, it has been shown that demix-
ing is suppressed by crystallization [23,24], whereas
colloid-polymer mixtures, described at the level of the
Asakura-Oosawa-Vrij model, show macroscopic demixing,
provided the polymer size exceeds, roughly, 40% of that
of the colloids [25]. A novel class of interactions, which
has drawn considerable attention to it in the realm of
soft matter physics, are ultrasoft potentials, which are
free of divergences, and which model effective potentials
between polymeric colloids of various architectures [26].
In this context, Gaussian mixtures, modeling polymer
blends, have been studied and it has been demonstrated
that the cross-interaction between the two species
plays a crucial role in determining whether macrophase
separation [27–31] or microphase ordering [31,32] will
occur. However, novel phenomena can show up when, for
example, the ultrasoft potential decays more sharply than
the Gaussian potential [33] (i.e. exp[− (r/σ)m], where
m> 2), in which case at least one of the two components
involved has a Kirkwood instability in its fluid structure
and thus undergoes a transition to cluster crystals at
sufficiently high densities [33–38]. The purpose of this
work is to investigate the phase behaviour scenarios that
appear in such mixtures. We demonstrate that several
instability lines are simultaneously present in the mixture,
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both for infinite- and finite-wavelength perturbations of
the uniform state, giving thus rise to competition between
demixing and ordering in super-clustered crystals. The
phase behaviour is extremely sensitive to the form of
the cross-interaction between the two species in a binary
mixture. We accompany the phase diagrams with struc-
tural information on the two species, calculated within an
accurate density functional theory approach.

The model. – We consider systems of particles
interacting through the generalised exponential model
(GEM-m),

uij(r) = εij exp [− (r/σij)mij ] . (1)

Evidently, the model involves nine parameters, the three
energy scales εij , the three length scales σij and the three
exponents mij , i, j = 1, 2. Choosing one of the εij as the
unit of energy and one of the σij as the unit of length,
still leaves us with seven model parameters. In addition,
the concentration of the second species, x≡ ρ2/ρ, the
total density ρ= ρ1+ ρ2 as well as the temperature T
are the thermodynamic parameters of the many-body
system, rendering thereby the whole parameter space
highly dimensional. To simplify things, we focus at the
dependence of the phase diagram on the relative range
of the cross-interaction σ12, varying the density ρ and
the concentration x and keeping all other parameters
fixed. In particular, we choose εij = ε, (i, j = 1, 2), and
σ11 = σ22 = σ.
In order to make a choice for the exponents mij of

the interactions, we recall some established facts on the
phase behaviour of the GEM-m model in general [35].
The Fourier transform of the GEM-m potential is
positive everywhere when m� 2, and the GEM-(m� 2)
potential belongs to the Q+ class; pure Q+ systems are
characterised by the presence of a maximum freezing
temperature and the occurrence of re-entrant melt-
ing [39–44]. Simulation results show that the effective
potential between two polymer chains in isolation [45,46],
or between two athermal dendrimers [47] in isolation,
can be modeled by a Q+-potential, specifically the
GEM-2 potential. The Fourier transform of the GEM-m
potential oscillates around zero when m> 2, and thus the
GEM-(m> 2) potential belongs to the Q± class of poten-
tials; pure Q± systems freeze at all temperatures and form
a cluster-crystal phase [34–36,48]. Recent computer simu-
lation results show that the isolated effective potential
between two dendrimers with amphiphilic end groups [49],
can be modeled by a Q± potential of the GEM-m form.
Although cluster-crystal formation does not occur in

a pure GEM-2 system, theoretical work suggests that a
highly delocalised cluster-crystal may form in a mixture
of two GEM-2 species [32], due to the appearance in
the mixture of a λ-instability line (see below), on which
the structure factors of the uniform fluid phase diverge
at a nonzero value of the wave number. The λ-line of
the Gaussian mixture is a combined effect of all three

interparticle interaction potentials, since it is absent for
any of the two pure components. In what follows, we
study a system consisting of GEM-2 (m11 = 2) and GEM-4
(m22 = 4) particles, as a model Q

+/Q± mixture. Contrary
to the Gaussian mixture, here the pure GEM-4 component
has an instability line of its own. We aim at exploring
the significance of this fact on the phase behaviour of
the mixture as well as the possibilities of emergence
of additional instability lines due to the presence of
both components. We choose the exponent in the cross-
interaction potential to belong to the Q± class, m12 = 3.
This choice is motivated by the fact that in a mixture of
athermal (GEM-2) and amphiphilic (GEM-4) dendrimers,
the cross-interaction will have, in general, an exponent
lying in-between the two and, as the GEM-2 lies at
the threshold of the Q+-class, the cross-interaction will
classify as Q±. In this sense, the precise choice m12 = 3 is
at this point arbitrary but the ensuing phenomena should
be generic.

Method and results. – In all investigations, we work
at fixed temperature kBT/ε= 1, where kB is Boltzmann’s
constant. The liquid direct correlation functions of the two
components, cij(r), i, j = 1, 2, can be approximated within
the mean-field approximation (MFA)

cij(r) =−βuij(r), (2)

and used as a closure to the the Ornstein-Zernike (OZ)
equation to obtain the total correlation function hij(r),

hij(r) = cij(r)+
∑
l

ρl

∫
d3r′hil(r′)clj(|r− r′|), (3)

where β = (kBT )
−1, and ρl is the bulk number density of

species l. The MFA has been shown to be very accurate
for systems interacting through ultrasoft potentials at high
density [32,35,40,50].
The partial structure factors Sij(k) are related to the

Fourier transform of the total correlation function h̃ij(k),

Sij(k) = δij +
√
ρiρj h̃ij(k); (4)

the divergence of Sij(k) signals fluid instability. In Fourier
space, the OZ can be written as

h̃ij(k) =
Nij(k)

D(k)
, (5)

where, within the MFA, the denominator can be written
in terms of the Fourier transforms of the potentials ũij(k),

D(k) = 1+β [ρ1ũ11(k)+ ρ2ũ22(k)]

−ρ1ρ2β2
[
ũ212(k)− ũ11(k)ũ22(k)

]
. (6)

The partial structure factors diverge whenD(k) = 0; diver-
gence occurs for some density and concentration when
either of the following two conditions is true: ũii(k)< 0, or
ũ11(k)ũ22(k)< ũ

2
12(k). The first condition is satisfied for
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Fig. 1: (Colour on-line) Phase diagram for a system with
σ12 = 1.07. The black lines represents the λ- and spinodal lines,
and the thick lines denote the boundaries of the coexistence
regions: liquid-liquid (black), liquid-BCC (red) and liquid-FCC
(dark blue). The thin lines join coexisting points. The three-
phase coexistence areas are denoted by the yellow triangles.
The BCC-FCC coexistence area is very small and can be taken
to be the point where the thick red and blue curves meet.

some k > 0 when, as is our case, the interaction potential
of one of the species belongs to the Q± class and is related
to the cluster-crystal formation in the pure system; a
λ-line denotes the locus of points where D(k �= 0) = 0.
The second condition can be satisfied for any value of k;
when satisfied at k= 0, demixing occurs, and the spinodal
denotes the locus of points where D(k= 0) = 0.
We consider first a mixture with σ12 = 1.07σ. In fig. 1,

we see that such a mixture features two instability lines:
a λ-line, i.e., D(k∗ �= 0) = 0, which has its origin at the
Kirkwood instability of the pure GEM-4-model, and a
demixing spinodal, i.e., D(k= 0) = 0. On the high-density
side of the two lines is the region of instability of the
homogeneous fluid with respect to infinitesimal deviations
of the two partial densities ρi(r) from uniformity at wave-
lengths given by the values of k on the instability lines.
Of interest is the structure of the fluid as the system

approaches the λ-line. In fig. 2, we show the pair corre-
lation functions for this system and the structure factors
(insets) to indicate how close the system is to a fluid insta-
bility. As the system approaches the λ-line, the peak in
g22(r) at r= 0 increases, as expected. Interestingly, peaks
in both g11(r) and g12(r) at r= 0 also appear, suggesting
that the clustering behaviour of the GEM-4 species draws
in the non-clustering GEM-2 species. The reason for this
lies in the Q± nature of the cross-interaction potential;
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Fig. 2: (Colour on-line) The air correlation functions gij(r)
and the partial structure factors Sij(k) (insets), for a system
with σ12 = 1.07σ at the following densities and concentrations:
ρ= 5.5 and x= 0.1 (black); ρ= 5.5 and 0.95 (red); ρ= 7.0 and
0.95 (dark blue). The partial structure factors demonstrate how
near each fluid is to instability.

the GEM-2 species is “forced” into the GEM-4 clusters
to minimise the number of GEM-4 particles that it
overlaps with, and as a result, it also clusters with other
GEM-2 particles. Further, the propensities of the two
components to demix (maxima of Sij(k) at k= 0) or to
microphase-order (maxima of Sij(k) at k

∗ �= 0) can be
discerned, where it can be seen that the relative height of
the two is not the same for both species.
To determine the phase diagram, we follow the

compressibility route to obtain the liquid excess Helmholtz
free energy (fex(ρ, x)) per particle (N =N1+N2) as a
function of density ρ= (N1+N2)/V and concentration
x=N2/(N1+N2), as outlined in refs. [29,50]. Briefly,

fex(ρ, x) = (1−x)2βũ011+2x(1−x)βũ012+x2βũ022, (7)

where ũ0ij is the value of the Fourier transform of the
potential at k= 0. The ideal contribution to the free
energy βf id(ρ, x) contains an ideal gas term and the
entropy-of-mixing term, x lnx+(1−x) ln(1−x).
The properties of candidate solid phases are calculated

using classical density functional theory (DFT) with the
MFA-excess Helmholtz free energy [32,34]:

Fex[ρi, ρj ] =
1

2

2∑
i,j=1

∫ ∫
d3rd3r′ρi(r)ρj(r′)uij(|r− r′|).

(8)
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We make the Gaussian approximation for the one-particle
density,

ρi(r)≡ ni
(αi
π

)3/2∑
{R}
exp
[−αi(r−R)2] , (9)

where ni is the number of particles of species i at each
lattice site, αi is the delocalisation parameter and the sum
is over all lattice sites {R}. The ideal contribution to the
free energy is given by:

Fid[ρ] = kBT

2∑
l=1

∫
d3rρl(r)

[
ln(ρl(r)Λ

3
l )− 1

]
, (10)

where Λl is the thermal de Broglie wavelength of species l.
The excess part of the variational free energy per

particle f̃(α1, α2, n1, n2) is given by

f̃ex =
1

2

2∑
i,j=1

[
xinj

(χij
π

)1/2 ∞∑
m=1

ξm

×
∫ ∞
0

dr
r

Rm

[
e−χij(r−Rm)

2 − e−χij(r+Rm)2
]
uij(r)

+xinj

(
16χ3ij
π

)1/2 ∫ ∞
0

r2e−χijr
2

uij(r)dr

]
, (11)

where χij = αiαj/(αi+αj) and Rm denotes the lattice
vectors lengths. The sum in the right-hand side of eq. (11)
above runs thus over all nonvanishing Bravais lattice
vectors R, ordered according to their length, so that ξm is
the number of vectors participating in the shell with length
Rm. The contribution to the free energy from the particles
occupying the same lattice site is expressed by the last
term in eq. (11). The free energy of the (meta)stable solid
phase is determined by minimizing eq. (11) with respect
to α1, α2 and the lattice spacing d. Note that ni can
be obtained from d and ρi through ni = ρid

3/ζ, where ζ
is the number of lattice sites per cubic cell. The second
term in the above equation accounts for the interparticle
interactions at one lattice site; here we multiplied by
nj rather than nj − 1 in order to maintain consistency
with the compressibility route used to calculate the free
energies of the liquid phase. Equation (11) reduces to the
liquid Helmholtz free-energy calculated via the compress-
ibility route, when α1 = α2 = 0. The compositions of
coexisting phases is determined by using the double-
tangent construction on the Gibbs free energy per particle
g= f +P/ρ as described by Archer et al. [27,29,32].
As candidate solid structures we considered body-

centered cubic (BCC) and face-centered cubic (FCC)
lattices with all sites occupied by both species (mixed
lattice), and NaCl- and CsCl-type structures, with
different species located at alternating sites. We find that
the BCC and FCC mixed lattices are the most stable
structures for the systems considered in this work. This
result is consistent with the peak in all gij(r) at r= 0

discussed above; the GEM-2 particles are drawn into the
GEM-4 clusters. However, the demixing tendency of the
system only allows the mixed clusters to be stable over
a very small concentration range, i.e., x> 0.99. Although
both species are centered on every lattice site, the GEM-2
species is much more delocalised than the GEM-4; the
value of α1 is roughly half the value of α2. Thus, although
the GEM-2 model shows no propensity to clustering
whatsoever, and it possesses just one fluid state at this
temperature [40], the presence of the GEM-4 component
has a twofold influence on the Gaussian particles: on
the one hand, it enforces a macrophase separation; on
the other, the GEM-4 clusters that spontaneously form
at x= 1 act as “nucleation centers” for the minority
Gaussian particles, which now occupy the same crystal
sites as the GEM-4 ones in a multiply clustered “super-
crystal” with mixed occupancy of its lattice sites. Due to
the weaker localization of the Gaussian particles on the
crystal sites, it can be expected that their long-time diffu-
sivity will be considerably larger than that of the GEM-4
ones [37], thus giving rise to a crystal with markedly
different mobilities between its two components.
For a system with σ12 = 1.07σ, liquid-liquid demixing

occurs for total densities in the range 4� ρσ3 � 5. At
higher densities, the demixing transition is preempted,
first by the liquid-solid BCC transition, and then by the
liquid-solid FCC transition. There are two triple regions
in this system: the BCC solid phase coexists with both
a fluid phase rich in species 2 and a fluid phase rich in
species 1, and at a higher density a fluid rich in species 1
coexists with both a BCC and an FCC solid phase. The
repulsion between the two species dictates that the mixed
clusters cannot be stable for very large concentrations
of species 1. Therefore, the solid, highly concentrated
in species 2 (x> 0.99), coexists with the fluid phase in
order to satisfy both the requirement that the number of
overlapping species 1 and 2 particles be minimised and
that the concentration of the cluster accommodate the
unfavorable interaction between the two species.
To investigate the influence of the cross-interaction

range on the structural and phase behaviour of the
mixture, we compare the results for a system with
σ12 = 1.07σ discussed above to those obtained for a
system with a slightly decreased range: σ12 = 1.05σ.
The latter system also has a λ-line associated with
the GEM-4 cluster-crystal formation, and a spinodal.
However, macrophase separation is here preempted by
crystallization, a feature brought about by a minimal
reduction of the cross-interaction range. Furthermore,
the spinodal lies within a second λ-line, as shown in
fig. 3. The latter is reminiscent of that observed for a
GEM-2 mixture [32] where the λ-line occurs in a system
that does not demix at any density. However, whereas
for the GEM-2 mixture a negative non-additivity of the
interactions, i.e., ε12 < ε11 = ε22 and σ12 < (σ11+σ22)/2
is necessary to bring about such an instability, here this
is not the case. This second λ-line moves inside of the
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Fig. 3: (Colour on-line) Phase diagram for a system with
σ12 = 1.05σ. The broken lines represents the λ- and spin-
odal lines, and the thick lines denote the boundaries of the
coexistence regions: liquid-BCC (red), liquid-FCC (dark blue)
and the metastable liquid-liquid coexistence (black), which is
preempted by the liquid-solid transition. The thin lines join
coexisting points. The three-phase coexistence is represented
by the yellow triangle.

spinodal as the range of repulsion between the two species
increases and is present at higher densities, for the system
with σ12 = 1.07σ discussed above. For the system with
σ12 = 1.05σ, there is a region where the preference of each
species to interact with itself is not strong enough to result
in demixing but does result in an unstable homogeneous
liquid phase. While one might expect this to lead to a
second solid structure, in this case, the liquid- solid coex-
istence associated with the original λ-line, is very broad
and preempts the formation of a second solid structure.
In fig. 4 we show a comparison of the correlation

functions between the mixture with σ12 = 1.07σ and that
with σ12 = 1.05σ. Although little difference can be seen
in the radial distribution functions gij(r), the Fourier-
space analysis on the basis of the partial structure factors
Sij(k) brings about the salient differences: whereas the
former system shows enhanced forward scattering (k= 0),
the latter shows peaks at a finite value k= k∗, which is
clearly distinct from that associated with the Kirkwood
instability of the GEM-4-model. Indeed, as can be seen
in fig. 5, the second λ-line corresponds to instabilities at
wave numbers that are smaller than the first by as much
as a factor 4; correspondingly, it describes the propensity
of the system to form novel cluster crystals with a lattice
constant as much as 4 times bigger than that of the pure
GEM-4 crystals. Though these are not stable for the model
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 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 5.48

 5.49

 5.5

 5.51

 5.52

 5.53

 5.54

 5.55

 5.56

 5.57

 5.58

k* σ

k* σ

x

Fig. 5: (Colour on-line) The values k∗ of the wave numbers
at which instabilities occur along the two λ-lines of the mix-
ture without a macrophase separation. Right vertical axis: the
λ-line dictated by the GEM-4 components; left vertical axis:
the new λ-line.

at hand (σ12 = 1.05σ), it can be anticipated that they
will gain stability if the cross-interaction range is further
reduced. The kind of ordering between the two species that
would occur in such crystals is a problem for the future.

Summary and conclusions. – We have examined by
means of an accurate density functional theory the struc-
tural and phase behaviour in mixtures between clustering
and non-clustering, ultrasoft particles. The interplay
between demixing and crystallization is reminiscent of

26003-p5



S. D. Overduin and C. N. Likos

the scenarios for one-component systems, however the
physics is here much richer. Further, there seems to be
an extreme sensitivity of the ensuing phase behaviour
to the interaction parameters. We have found the exis-
tence of mixed cluster crystals, in which the minority,
non-clustering component, collapses on the crystal sites
occupied by the clustering one. Future work should focus
on the possibilities to bring the second λ-line down to
lower densities, so as to make novel, possibly intercalated,
crystals stable. Investigations on the wetting behaviour of
the demixing system across the coexistence line, of mixed
crystals in confined geometries, on triple-point melting
and on the issue of partial diffusivities, are additional
problems for future work.

∗ ∗ ∗
SDO is grateful for the financial support of the Natural

Sciences and Engineering Research Council of Canada.

REFERENCES

[1] Sear R. P. and Gelbart W. M., J. Chem. Phys., 110
(1999) 4582.

[2] Stradner A., Sedgwick H., Cardinaux F., Poon
W. C. K., Egelhaaf S. U. and Schurtenberger P.,
Nature, 432 (2004) 492.

[3] Sciortino F., Mossa S., Zaccarelli E. and
Tartaglia P., Phys. Rev. Lett., 93 (2004) 055701.

[4] Mossa S., Sciortino F., Tartaglia P. and
Zaccarelli E., Langmuir, 20 (2004) 10756.

[5] Campbell A. I., Anderson V. J., van Duijneveldt
J. S. and Bartlett P., Phys. Rev. Lett., 94 (2005)
208301.

[6] Imperio A. and Reatto L., J. Phys.: Condens. Matter,
16 (2004) S3769.

[7] Imperio A. and Reatto L., J. Chem. Phys., 124 (2006)
164712.

[8] Stiakakis E., Petekidis G., Vlassopoulos D., Likos
C. N., Iatrou H., Hadjichristidis N. and Roovers J.,
Europhys. Lett., 72 (2005) 664.

[9] Charbonneau P. and Reichmann D. R., Phys. Rev. E,
75 (2007) 011507.

[10] Archer A. J. and Wilding N. B., Phys. Rev. E, 76
(2007) 031501.

[11] Archer A. J., Phys. Rev. E, 78 (2008) 031402.
[12] Archer A. J., Ionescu C., Pini D. and Reatto L.,

J. Phys.: Condens. Matter, 20 (2008) 415106.
[13] Mederos L. and Navascués G., J. Chem. Phys., 101

(1994) 9841.
[14] Daanoun A., Tejero C. F. and Baus M., Phys. Rev.

E, 50 (1994) 2913.
[15] Coussaert T. and Baus M., Phys. Rev. E, 52 (1995)

862.
[16] Tejero C. F., Daanoun A., Lekkerkerker H. N. W.

and Baus M., Phys. Rev. Lett., 73 (1994) 752.
[17] Tejero C. F., Daanoun A., Lekkerkerker H. N. W.

and Baus M., Phys. Rev. E, 51 (1995) 558.
[18] Hasegawa M., J. Chem. Phys., 108 (1998) 208.
[19] Panagiotopoulos A. Z., Floriano M. A. and Kumar

S., Langmuir, 18 (2002) 2940.

[20] Pierleoni C., Addison C., Hansen J.-P. and
Krakoviack V., Phys. Rev. Lett., 96 (2006) 128302.

[21] Lo Verso F., Panagiotopoulos A. Z. and Likos
C. N., Phys. Rev. E, 79 (2009) 010401.

[22] Abbas S. and Lodge T. P., Phys. Rev. Lett., 97 (2006)
097803.

[23] Dijkstra M., van Roij R. and Evans R., Phys. Rev. E,
59 (1999) 5744.

[24] Velasco E., Navascués G. and Mederos L., Phys.
Rev. E, 60 (1999) 3158.

[25] Dijkstra M., Brader J. M. and Evans R., J. Phys.:
Condens. Matter, 11 (1999) 10079.

[26] Likos C. N., Phys. Rep., 348 (2001) 267.
[27] Archer A. J. and Evans R., Phys. Rev. E, 64 (2001)

041501.
[28] Archer A. J. and Evans R., J. Phys.: Condens. Matter,

14 (2002) 1131.
[29] Archer A. J., Likos C. N. and Evans R., J. Phys.:

Condens. Matter, 14 (2002) 12031.
[30] Finken R., Hansen J.-P. and Louis A. A., J. Stat.

Phys., 110 (2003) 1015.
[31] Finken R., Hansen J.-P. and Louis A. A., J. Phys. A:

Math. Gen., 37 (2004) 577.
[32] Archer A. J., Likos C. N. and Evans R., J. Phys.:

Condens. Matter., 16 (2004) L297.
[33] Likos C. N., Lang A., Watzlawek M. and Löwen H.,
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