| SCP                                    |             | Intro      | 700° G      | 10mp        | Theory      | ,                | March           | 11, 202 |
|----------------------------------------|-------------|------------|-------------|-------------|-------------|------------------|-----------------|---------|
| Mathematicians:                        | "Group '    | theory     | is the      | study       | of algel    | oraic stro       | uctu <i>r</i> e | 5       |
|                                        |             | 9          |             |             |             |                  |                 |         |
| Group Axioms                           |             |            |             |             |             |                  |                 |         |
| A group is a                           | tuple (G    | ,·) of     | f a set     | binary      | t Operation | 5 <i>a</i> tisfy | ing;            |         |
|                                        | pair        |            |             |             |             |                  |                 |         |
| I) (las a : Wall                       | . ( . )     | a C        |             |             |             |                  |                 |         |
| 1) Closure: Ya,b                       | = G, α·δ    | £ G        |             |             |             |                  |                 |         |
| 2) Associativity: Y a                  | , 6, c ∈ 6  | , a·(b·    | c) = (a.    | ъ).с        |             |                  |                 |         |
|                                        |             |            |             |             |             |                  |                 |         |
| 3) Identity: 3! e                      | € G 5.+.    | ∀a €       | 6, q.e      | 2 = e.q     | -a          |                  |                 |         |
| 4) Inverse: Ya E                       | 4 E , 0     | £ 6 s      | nt. a·b     | = b a :     | : e         |                  |                 |         |
|                                        |             |            |             |             |             |                  |                 |         |
| Bonus: if Ya, be                       | 6, a·b = b· | a the      | group is    | called      | "Abelian"   | else "           | Non -           | Abelian |
| Ex 1. (7, +)                           | set of in   | tegers una | der additio | n           | 군 = 원···,·  | -2, -1, 0,       | 1, 2,           | . }     |
| N 11 15 15 7                           | w . 1 .     |            |             |             |             |                  |                 |         |
| 1) a+b = c, c ∈ Z<br>2) a+(b+c) = (a+b |             |            |             |             |             |                  |                 |         |
|                                        |             |            |             | ( 7         | , +) is a   | group 1          |                 |         |
| 3) 0+a = a+o                           | Y a E Z     |            |             |             | is also     |                  |                 |         |
| 4) a + (-a) = (-a)                     | ) + a = 0   | ∀a,-a      | € ₹         |             |             |                  |                 |         |
| Ex. 2 (7, -)                           | Set of i    | nteacc     | under co    | l.bes.dian  |             |                  |                 |         |
| 1) a-b=C, ce;                          |             |            | alloci sa   | o ; taction |             |                  |                 |         |
| 2) a-(b-c) = (a-                       |             |            |             | Not a       | group!      |                  |                 |         |
| 1 1                                    |             |            |             |             | ( Z , x)    | ahaaa(6 11)      | nder mu         | .14.    |
| 3 - (2-1) = 2                          | (3-1)       |            | .   1       | 17.         | ( 'F . x )  | HILEGED W        | J V-            |         |

Let's consider the permutation of three numbers.

$$P(3): 3! \rightarrow 6 \text{ total permutations} \qquad (1,2,3) \qquad (1,3,2) \qquad (3,2,1) \qquad (2,1,3) \qquad (3,1,2) \qquad (2,3,1)$$

Let's assign labels to these permutations:

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad e \text{ sep. } \text{ identity here} \qquad \text{let } \times, y, 2 \text{ be} \qquad \text{the "labels" and turn red iff an element Joesn'th its initial position}$$

$$d = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad \text{enote in the initial position}$$

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad \text{enote in the initial position}$$

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad \text{enote in the initial position}$$

Now, if 
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad c = \begin{pmatrix}$$

b: 
$$M(b)\begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ \frac{1}{1} \end{bmatrix} \longrightarrow M(b) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$C: M(c) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \longrightarrow M(c) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(1)

· 3 - fold rotation about vertical axis out of page by 
$$\frac{2n}{3}$$
,  $\frac{4n}{3} = -\frac{2n}{3}$ 

$$E : 32 \rightarrow 32$$
 identity

$$D: 3^{2} \xrightarrow{2} 1^{3} \qquad F: 3^{2} \xrightarrow{2} 2^{3} 1$$

24/3 counter clock

 $A : 3 2 \longrightarrow 2 3$ 

reflection about

$$44/3 = co-nterclock$$
 or  $\frac{2m}{3}$  clock

4413 = counterclock or 2m clock

reflection about

Note. A,B, C,D.E,F represent a sym op. / permutation and a final condition

reflection about

| ľ                             | e of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                         |                                                           | E                       | A                                                                                                                 | В                                 | C                                | D        | 7                 |           |          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|----------|-------------------|-----------|----------|
| F "                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | _                                                         |                         |                                                                                                                   | В                                 |                                  | _        | F                 | _         |          |
| From " Appli                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | E                                                         |                         | Ą                                                                                                                 |                                   |                                  | D 2      | F                 |           |          |
| Group Theory                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | A                                                         | <b>A</b>                | E                                                                                                                 | D                                 | F                                | B        |                   |           |          |
| Physics of S                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | В                                                         | В                       | F                                                                                                                 | E                                 | D                                | C        | A                 |           |          |
| Dressel haus                  | why has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | C                                                         | ۷                       | D                                                                                                                 | P                                 | E                                | A        | B                 |           |          |
| the operation                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | D                                                         | D                       | С'                                                                                                                | Α                                 | В                                | F        | E                 |           |          |
| differently,                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | F                                                         | F                       | В                                                                                                                 | С                                 | Α                                | E        | D                 |           |          |
| relationships ho              | ld true                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                                                           |                         |                                                                                                                   |                                   |                                  |          |                   |           |          |
| د ا                           | Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | defined                     | 5.                                                        | ·                       | DA = C                                                                                                            | 7                                 | z<br>Table                       | defined  | s. <del> </del> . | AD = B    |          |
| We've shown                   | the en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lahan 1                     | 1                                                         |                         |                                                                                                                   | ( 1)                              | h                                | 3.45     |                   | all.'.    | have     |
| We've shown<br>one - to - one |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                           |                         |                                                                                                                   |                                   |                                  |          |                   |           |          |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                           |                         |                                                                                                                   | •                                 | · ·                              |          |                   |           |          |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                           |                         |                                                                                                                   |                                   |                                  |          |                   |           |          |
| For symme                     | try opera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | itions of                   | Som                                                       | ething                  | Complex                                                                                                           | like a                            | Crustal                          | it's tou | igh to            | visualize | repen    |
| For symme                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                           |                         |                                                                                                                   |                                   |                                  |          |                   | Visualize | : repear |
| For symme                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                           |                         |                                                                                                                   |                                   |                                  |          |                   | visua ize | : repear |
| >ym. ops.                     | but let                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s suppos                    | e th                                                      | e sy                    | m. Ops. o                                                                                                         | xue Elen                          | nents of                         | a grou   | <b>«</b> Ρ·       |           |          |
| sym. ops.                     | but let                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s suppos<br>ate 6           | e th                                                      | e sy                    | m. ops. o                                                                                                         | ure elen<br>wham                  | nents of                         | a grou   | <b>«</b> Ρ·       |           |          |
| >ym. ops.                     | but let                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s suppos<br>ate 6           | e th                                                      | e sy                    | m. ops. o                                                                                                         | ure elen<br>wham                  | nents of                         | a grou   | <b>«</b> Ρ·       |           |          |
| sym. ops.  If we              | but let'  Can Yel  came way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s suppos<br>ate 6           | e th<br>each<br>elem                                      | e sy<br>ents            | m. Ops. o<br>ement v                                                                                              | w/ a mo                           | nents of                         | a grou   | <b>«</b> Ρ·       |           |          |
| sym. ops.                     | but let'  Can Yel  came way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s suppos<br>ate 6           | e th<br>each<br>elem                                      | e sy<br>ents            | m. Ops. o<br>ement v                                                                                              | ure elen<br>wham                  | nents of                         | a grou   | <b>«</b> Ρ·       |           |          |
| sym. ops.                     | but let'  Can rel  iame way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s suppos<br>ate (<br>the    | e the<br>each<br>eleme                                    | e sy<br>ents<br>(       | m. ops. c ement \ obey it  M(1)                                                                                   | w/ a mo                           | nents of  atrix th               | a grou   | <b>«</b> Ρ·       |           |          |
| sym. ops.                     | but let'  Can rel  iame way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s suppos<br>ate (<br>the    | e the<br>each<br>eleme                                    | e sy<br>ents<br>(       | m. ops. c ement \ obey it  M(1)                                                                                   | w/ a mo                           | nents of  atrix th               | a grou   | <b>«</b> Ρ·       |           |          |
| sym. ops.  If we in the       | but let'  Can Yel  Game way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s suppos<br>ate 6<br>the    | e the<br>each<br>element<br>DA =<br>D =                   | e sy<br>ent<br>(        | m. ops. c  ement   obey $ \overrightarrow{i} $ $ \longrightarrow $ $ M(1) $                                       | w/ a ma  D) M(A)  M(D) =          | ments of  suffix the  M(c)  M(B) | a grou   | the               | : mult.   |          |
| sym. ops.                     | but let'  Can Yel  Game way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s suppos<br>ate 6<br>the    | e the<br>each<br>element<br>DA =<br>D =                   | e sy<br>ent<br>(        | m. ops. c  ement   obey $ \overrightarrow{i} $ $ \longrightarrow $ $ M(1) $                                       | w/ a ma  D) M(A)  M(D) =          | ments of  suffix the  M(c)  M(B) | a grou   | the               | : mult.   |          |
| If we in the e                | but leting the but leting to t | s suppose  ate 6  the  e. A | e the each element DA = D = D = D = D = D = D = D = D = D | e sy<br>ent<br>(<br>B — | m. ops. c  ement   obey $ \overrightarrow{x} $ $ \longrightarrow $ $ M(1) $ $ \longrightarrow $ $ M(A) $ ym. ops. | w/ a ma  D) M(A)  M(D) =  arithme | ments of  atrix the  M(C)  M(B)  | a grou   | trix 1            | , mu)t.   | table    |
| sym. ops.  If we in the       | but leting the but leting to t | s suppose  ate 6  the  e. A | e the each element DA = D = D = D = D = D = D = D = D = D | e sy<br>ent<br>(<br>B — | m. ops. c  ement   obey $ \overrightarrow{x} $ $ \longrightarrow $ $ M(1) $ $ \longrightarrow $ $ M(A) $ ym. ops. | w/ a ma  D) M(A)  M(D) =  arithme | ments of  atrix the  M(C)  M(B)  | a grou   | trix 1            | , mu)t.   | table    |

Let the length of each side equal 1 
$$(-\frac{1}{2}, \frac{1}{2\sqrt{3}})$$
 origin at the fixed point under all sym. ops.  $(-\frac{1}{2}, \frac{1}{2\sqrt{3}})$   $(-\frac{1}{2}, \frac{1}{2\sqrt{3}})$   $(-\frac{1}{2}, \frac{1}{2\sqrt{3}})$   $(-\frac{1}{2}, -\frac{1}{2\sqrt{3}})$   $(-\frac{1}{2}, -\frac{1}{2\sqrt{3}})$ 

 $B : AD = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$ 

 $C = AF = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$ 

(5 Counter - Clock

where  $\theta = 120^{\circ}$ 

the group that is isomorphic to

These matrices & E, A, B, C, D, F3 constitute a matrix representation of

P(3) and the sym. ops. of an equilateral triangle

$$D : \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \qquad F : \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

Let's return to the 3x3 matrices we constructed to represent the permutation of three numbers, P(3) § M(e), M(a), M(b), M(c), M(d), M(f) } can use similarity transformations to produce irreducible representations P. We which is the stepping stone we need to create a "character table" General form of similarity transformation: where A, A are similar matrices; P a change of basis matrix \* similar matrices represent the same linear map under (possibly) different bases \* Phrased another way, similar matrices roughly do the same thing in diff. coord systems. This idea is useful since we can find P<sup>1</sup>, P to block diagonalize matrices  $A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \\ 0 & A_3 \end{bmatrix}$ 

16 A cannot be further block diagonalized, it's called an "irreducible representation"

$$P = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$P = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$P = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$P = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$P = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

$$P = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac$$

| Ba  | sil    | Defini:        | tions     |               |        |       |               |        |            |       |       |            |       |      |       |         |         |      |     | h   | = 01d | • ( |
|-----|--------|----------------|-----------|---------------|--------|-------|---------------|--------|------------|-------|-------|------------|-------|------|-------|---------|---------|------|-----|-----|-------|-----|
|     |        |                |           |               |        |       |               |        |            |       |       |            |       |      |       |         |         |      |     |     | 1     |     |
| 0   | Order  | of             | 61        | oup           | 3      | #     | 0             | £.     | elem       | nenta | i     | M          | હ     | е    | .g.   | orde    | 1       | 40   | PC3 | ) , | h =   | 6   |
|     |        |                |           |               |        |       |               |        |            |       |       |            |       |      |       |         |         |      |     |     |       |     |
| 2   | subg   | roup :         | e a       | (             | olle   | ction | 0             | f      | elev       | nent  | 3     | ,<br>M     | G     |      | that  |         |         |      |     |     |       |     |
|     | form   | a (            | group     | +             | -hems  | elve  | S             |        |            |       |       |            |       |      |       |         |         |      |     |     |       |     |
|     |        |                |           |               |        | _     |               |        |            |       |       |            |       |      |       |         |         |      |     |     |       |     |
|     | e.g.   | for 1          | PC3)      |               | E 5    | , [   | Ε, Ο          | , F    | <b>š</b> , | ΣE,   | , A 5 | , EE       | , 8 3 | , የ  | E, C  | 3       |         |      |     |     |       |     |
| (3) | ر امر  | - (1           |           |               |        |       |               |        |            |       |       |            |       |      |       |         |         | , n  | _   |     |       |     |
| 9   | order  | o <del>\</del> | an e      | elen<br>-     | nen t  | ı     | 2             | mal    | est        | val   | ue    | of<br>3    | n     | in - | he    | re lati | ση      | Х    | : Ł |     |       |     |
| 6   | 2.g. P | (3);           | t =<br>~~ | <i>፡</i><br>/ | A      |       | $\overline{}$ | ΄<br>⁄ | : E        | 1     | ~     | - F<br>~∕  | : 5   |      |       |         |         |      |     |     |       |     |
|     |        |                | ı         |               |        |       | 2             |        |            |       |       | 3          |       |      |       |         |         |      |     |     |       |     |
| (4) | Consu  | nation         | ` *       | (  -          | 144    |       |               |        |            |       |       |            |       |      |       |         |         |      |     |     |       |     |
| V   |        | eleme          | '         |               |        | ,     | ما            | Δ      | is         | ره ا  | Grad  | <u>ل</u>   |       |      |       |         |         |      |     |     |       |     |
|     | an     | EIENIG         |           |               |        |       |               |        |            |       |       |            | Ī     |      |       |         |         |      |     |     |       |     |
|     |        |                | •         | 3 =           | X      | A >   | - I           | \<br>\ | here       |       | Υ 6   | : (5       |       |      |       |         |         |      |     |     |       |     |
|     |        |                |           |               |        |       |               |        |            |       |       |            |       |      |       |         |         |      |     |     |       |     |
|     | (a     | n say          | }         | R             | 15     | the   | 4             | imi,   | )ar)t      | r     | tran  | sform      | n (   | οf   | A     | Ъy      | ×       |      |     |     |       |     |
|     |        |                |           |               | -,     |       |               |        |            |       |       |            |       |      |       |         |         |      |     |     |       |     |
|     | e. 9   | j. Po          | (3);      |               |        |       |               |        |            |       | C     |            | : 1   | Bι   | onjų  | gate    | to      | c    |     |     |       |     |
|     |        |                |           | Α             | = A =  |       | eflec<br>own  |        |            | its   |       |            |       |      |       |         |         |      |     |     |       |     |
|     |        |                |           | C             | BC.    | 1     | C             | (B     | C)         | ε     | ۲D    | = <u>/</u> |       |      | В     | Cor     | ) j u q | a le | +   | Α   |       |     |
|     |        |                |           |               | : c' = |       |               |        | •          |       |       |            |       |      |       |         | J       |      | ,,  |     |       |     |
|     |        |                |           |               |        |       |               |        |            |       |       |            |       |      |       |         |         |      |     |     |       |     |
|     |        |                |           |               |        |       | - 1           | D C E  | 3 F)       | - 1   | DA.   | : C        |       | •    | В     | conj    | ugal    | e ·  | 10  | C   |       |     |
|     |        |                |           | ١             | ),     | F     |               |        |            |       |       |            |       |      |       |         |         |      |     |     |       |     |
|     |        |                |           |               |        | -1    |               |        |            |       |       |            |       |      |       |         |         |      |     |     |       |     |
|     |        |                |           | F             | B F    | •     | =             | FC     | ВD         | )     | Ξ '   | FC =       | : A   |      | •     | Во      | nly     | Cor  | ij. | ю   | A, L  |     |
|     |        |                |           |               |        |       |               |        |            |       |       |            |       |      |       |         |         |      |     |     |       |     |
|     |        |                |           | 3             | A,     | В,    | C 3           |        | all        | c     | oni.  | ł          | ъ     | ea   | ch    | off     | ~er     |      |     |     |       |     |
|     |        |                | (   044   |               |        |       |               |        |            |       |       |            |       |      |       |         |         |      | r   |     |       |     |
|     |        |                | Class     |               |        |       |               |        |            |       |       |            |       |      |       |         | tain    | ed   | tro | M)  |       |     |
|     |        |                |           | q             | gi     | re n  | 9             | roup   | e.         | lemen | t     | ьч         | W     | nsug | ation | )       |         |      |     |     |       |     |

AfA' = A(FA) = AB = D

OFFD' = D(FF) = DF' = D

Three obvious classes are 
$$EE3$$
,  $EA.B.C3$ ,  $ED.F3$ 

2-fall  $Eag.$ 

Order = 3

- Properties of a conjugate:

D if A conj.  $Eag.$ 

B = Y' AY which wores b/c by def, inverses are unique

and  $EEY$  AY which wores b/c by def, inverses are unique

Proof: for the reader

Character =  $EE3$  Are  $EE3$  and  $EE3$  and

How can we figure out the character of 
$$\Gamma_1$$
 C3 and  $\sigma_2$ !

Which can be proven from the Wonderful  $\Gamma_2$  Theorem:

1)  $\sum_{R} N_R \chi^{(\Gamma_R)}(R) = 0$ 

is satisfied for all i.v. reps. except the identity rep,  $\Gamma_1$ .

Note.  $\sum_{R}$  denotes a sum over classes (i.e.  $\sum_{R} C_1 = \sigma_2$ ,  $C_3$ )

Considering  $\Gamma_1^{(1)}$ ; i. (1) + 2·(a) + 3·b = 0

 $\chi^{(1)}$ 

An easy solution;

 $\alpha = 1$ 
 $\beta = -1$ 
 $\Gamma_1$ 
 $\Gamma_1^{(1)}$ 

1 | 1 | 1 | 1 | 1 |  $\Gamma_1^{(1)}$ 
 $\Gamma_1^{(2)}$ 

1 | 1 | 1 | 1 |  $\Gamma_1^{(2)}$ 
 $\Gamma_1^{(2)}$ 

1 | 1 | 1 | 1 |  $\Gamma_1^{(2)}$ 

|                |             | Group      | Theory   | in       | Cryp            | tography   |                |              |
|----------------|-------------|------------|----------|----------|-----------------|------------|----------------|--------------|
| Fundamentally, | cry pto     | graphy     | is abo   | ut "     | secret          | writing "  |                |              |
| where there    | are t       | wo step    | 5:       |          | cvypt           | graphy     |                |              |
| send           | → add "     | encryption | n        | → recipi | en <del>l</del> |            | message '      | ` decrypted" |
| message        |             | ,<br>      |          | gets     | message         |            |                |              |
| The proced     | ures of     | encrypi    | tion ?   | decryp   | tion c          | ure conf   | ingent on      | 1            |
| a "key"        | so that     | the so     | ender ca | n alter  | · their         | message    | in a           |              |
| syste matic    |             |            |          |          |                 |            |                |              |
| Ex. Key is     | shift       | letters by | y two to | > the    | right           | s.t. y -   | →a, ½ →!       | b, a → c     |
| "Hello" ap     | iply "      | Janna"     | You 1    | apply th | e Vey           | in Veverse | to decrypt     | 4            |
| <b>*</b>       | ۶۶ <u> </u> |            |          |          |                 |            | crypt /decrypt |              |
| Λ°             | 1           |            | ^        |          |                 | _ ^        |                |              |

Of course, we've developed far more secure procedures, and the advent of

the Advanced Encryption Standard (AES) made it convention to have keys of 128, 192, and the popular 256 bits 22, 2, 2 are HUGE numbers so they're secure yet fast. Who wants to wait minutes to access a YouTube video?

It's important to note the sender key = receiver key and keys in the past shared via a codebook or by voice. How do we do this over the internet?

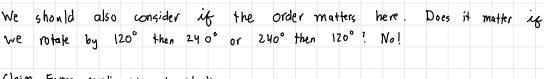
Need. A way for a server to send a private (secret) key over the public internet!

Solution: Vey exchange which allows two parties to agree on a key without sending one using one-way functions

```
one - way functions, per their name, are easy to have act in one way while being
       very difficult to undo
Analogy: Easy to mix point together but hard to undo and find constituents
   Diffie - Hellman key Exchange: a common protocol used
   General form is B mod (M) = scalar
   Here, x is the exponent for an arbitrary base B, and mod (M) means
   take the remainder of B^{\times} as the final result
   Ex. B = 2 x = 4 M = 3 \xrightarrow{B} 24 = 16 \longrightarrow 16 mod(3) = 1
   Under this scheme, x is the private key while B and M are
   publicly known.
   if Pl:x & PZ: 4 as their respective private Keys, exchanging
   them looks as follows:
                                                                this means let
                                                                a = B mod (M)
            agreed upon vey: (B mod CM)) = (B mod (M))
                                                               a mod (m) = a'
                                                              P = B mod (M)
                            = (B*y mod (M)) = (B mod (M)) b* mod (M) = b = a
    Ex. B=2 , x=4 , y=5, M=3
      B = 2 = 1048576 mod(3)
```

How is this related to group theory?

Let's define a cyclic group.


Definition. A cyclic group 6 is a group that can be generated by a single element q & 6 s.t. Ya & 6, a = qn for some integer n.

Ex. Let's solely consider votation of an equilateral triangle by 120°.

We showed that a group & E, D, F3 exists which is cyclic since each element can be "generated" from repeated mat, mult. of M(D) or MCF) as our binary operation. Note, there can be more than one generator in a group.

Alternatively, we could let a generator, g be 
$$e^{\frac{2\pi i}{3}}$$
 and the binary operation for the group be multiplication.

 $g^2 = e$  and  $g^2 = e$  = identity



Claim. Every cyclic group is abelian.

All cyclic groups are therefore Abelian

Proof. Let G be a cyclic group generated by g & G. Suppose x = gm, y = gn where m,n & z  $xy = g^m \cdot g^n = g^{m+n} \cdot g^{n+m} = g^n \cdot g^m$  thus  $xy = yx \quad \forall x,y \in G$ .

As another example, the integers mod n denoted  $Z_n$  for  $n \in \mathbb{N}$  are cyclic  $Ex. Z_7$  where the generator is 1, the binary operation addition  $| 1 = 1 \longrightarrow | 1+1 = 2 \longrightarrow | 1+1+1 = 3 \longrightarrow | 1+1+1+1 = 4 \longrightarrow | 1+1+1+1+1 = 5$ Theory notation  $| 1+1+1+1+1+1 = 6 \longrightarrow | 1+1+1+1+1 = 0$ 

1+1+1+1+1+1+1+1+1+1=0

Return to Diffie - Hellman.

its order  $(g^n:e)$  are publicly known. If two want a shored Ney:

1) PI selects a random integer  $a \in [2, n-1]$ , computes  $g^a$ , then

Let 9 be a generator for a cyclic group 6 where both 9 and

- sends it to P2
- 2) P2 selects a random integer  $b \in [2, n-1]$ , computes  $g^b$ , then sends it to P1

  3) P1 computes  $K_1 = (g^b)$  if P2 computes  $K_2 = (g^a)$
- 4) The shared key, Ks = K1 = K2 & G

The security relies on the assumption that even if someone knew  $g \in G$ , and even if they saw  $g^a$ ,  $g^b$ , it's computationally infeasible for someone to obtain the shared key

The above procedure is related to "the Discrete Logarithm Problem" DLP. Let G be a cyclic group and g ∈ G a generator. Given he G, find an integer n s.t. g = h. is appropriately chosen and large enough, the DLP is considered infeasible which is why HUGE prime numbers are chosen