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Disclaimer
As a disclaimer, the following study guide is not intended to be comprehensive. Instead, I hope

to offer an effective overview of the chapters deemed relevant to the course as far as I’m aware from
Physical Chemistry: A Molecular Approach by Simon and McQuarrie. Please consult the textbook if
you have any questions, comments, or concerns, and email me at mohan-shankar@virginia.edu if you
think a change should be made.

Lastly, if something is referred to as Equation X or Figure Y, it should have an internal hyper-
link to take you to the referenced item. With this in mind, I hope you find the following compendium
of knowledge to be useful.

General Math

Complex Numbers

All numbers can be expressed as a combination of a real and imaginary part, making them complex.
For example, the following is commonly seen

z = a︸︷︷︸
Re

+ ib︸︷︷︸
Im

(1.1.1)

where z is some complex number. The real part of z is given by a while the imaginary part is denoted
by ib. Written more pretentiously, Re{z} = a and Im{z} = b. If performing addition or subtraction,
you add/sub real from real and imaginary from imaginary. Multiplication is done via FOIL and taking
advantage of the fact that i2 = −1. Division is aided by the introduction of the complex conjugate, an
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operation denoted by an asterisk.
z∗ = a− bi (1.1.2)

The magnitude of some complex number, z, is given by

|z| =
√

|z|2 (1.1.3)

where
|z|2 = z ∗ z∗ = (a+ bi) ∗ (a− bi) (1.1.4)

It is important to remember that both Equation 1.1.3 and Equation 1.1.4 return real numbers.

Lastly, Euler’s equation can be expressed as:

eiαθ = cos(αθ) + isin(αθ) (1.1.5)

where α is some arbitrary constant.

Operators & Eigenstuff

An operator is usually denoted as a capital letter with a hat. For example, the Hamiltonian, the
energy operator, is denoted as follows: Ĥ. An operator can include many operations including addition,
multiplication, differentiation, integration, or a combination of them and many more. Operators act
on whatever functions lies to the right of them.

The expectation value (think of this an the average) of an arbitrary operator can be denoted as
follows:

< Â >=
∫
ψ(x)∗Âψ(x)dx (1.2.1)

Further, it is important to note that operators do not necessarily commute. That is to say∫
f(x)Âg(x)dx ̸=

∫
g(x)Âf(x)dx

depending on the operator and the functions, f(x) and g(x). More generally, this can be taken to mean
order matters if non-commutative.

As an example: take f(x) = g(x) = sin(x) here while Â = x, which is the position operator.∫
sin(x)xsin(x)dx =

∫
sin2(x) ∗ xdx

Because these two equations are equivalent, it is said that the operator commutes

If Â = d
dx ∫

sin(x) d
dx
sin(x)dx =

∫
sin(x)cos(x)dx ̸=

∫
d

dx
sin2(x)dx

Since you can’t rearrange the order of the functions and the operator, it can be said they do not commute
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If an operator acting upon some function returns the same function with some scalar present, the
function is considered to be an eigenfunction of the operator (here, "eigen" is German for "same").
Further, the scalar in front of the eigenfunction is referred to as the eigenvalue. Based on this definition,
an eigenfunction is dependent on both the function and the operator.

Ex. where Â = d

dx
→ Â[eαx] = d

dx
[eαx] = αeαx

Here, α is some constant, thus eαx is an eigenfunction of the operator, d
dx and α is the eigenvalue. Say

we apply this same operator to a different function:

Â[x2] = d

dx
[x2] = 2x

Since the function that was returned isn’t some scaled quantity of x2, that is to say αx2, this polynomial
is not an eigenfunction of the operator.

Operators have special types of properties. For example, they can be linear. This means that
you can distribute the operator as if it were a constant. An example of a linear operator is the
derivative:

d

dx
[ex + e2x] = d

dx
[ex] + d

dx
[e2x]

An example of a non-linear operator would be to define some operator, Â to take the reciprocal of
whatever its input is.

Â[ex] = 1/ex = e−x

If you tried to apply this to same system that differentiation was applied to above:

Â[ex + e2x] = 1
ex + e2x

̸= Â[ex] + Â[e2x] = 1
ex

+ 1
e2x

thus the operator is non-linear.

Another, special type of operators are called Hermitian. Their mathematical defintion is defined
below: ∫

ψ(x)∗Âψ(x)dx =
∫
ψ(x)Âψ(x)∗dx (1.2.2)

This is taken to mean the complex conjugate and complex form commute with one another, also
with respect to the operator. The eigenvalue of a hermitian operator corresponds to an observable
quantity like energy, position momentum, etc. This is exemplified by the Schrodinger equation

Ĥψ = Eψ (1.2.3)

where the Hamiltonian (Ĥ), the energy operator applied to the wavefunction (ψ) results in the
energy of a specific level, E.
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Even and Odd Functions

When integrating over all space ∫ +∞

−∞
f(x)dx

it is useful to recall that odd functions are symmetric with respect to the origin. What this means
for integration is that the positive and negative areas cancel out. Think of y = x as a general case.
This does not hold true for even functions. Instead, they are symmetric about the y-axis which means
you can halve your bounds of integration to (2 ∗

∫ 0
−∞ f(x)dx) or (2 ∗

∫+∞
0 f(x)dx) and evaluate from

there which may be useful to get an actual answer.

Additionally, the following properties also hold true:

f(−x) = −f(x) if the function is odd

f(−x) = f(x) if the function is even

Lastly, it is important to remember even * odd = odd; even * even = even; odd * odd = even when
dealing with functions.

Orthonormality

Orthonormality can be generally thought of as the integral of the function being evaluated to 0 or
1. It is generally expressed by the kroenecker delta

δn,m

{
n = m, 1
n ̸= m, 0

(1.3.1)

Ex. ∫
ψnψmdx = δn,m

If m ̸= n, the integral evaluates to 0
If m = n, the integral evaluates to 1

Orthogonal functions can be thought of as destructively interfering with one another like if you
have two waves that are out of phase. To see this numerical result for yourself, type

1
π

∫ 2π

0
sin(nx)sin(mx)

in Desmos. Set n and m to any integer value and check the result. It should be 0. Normalization
means that there is a coefficient in front of the integral that makes the overall value 1 upon integration
and application of the coefficient. In the same Desmos tab, make n = m and the value you get should
be one. This is because 1/π normalizes the result here. Without it, the integral would be π.

Lastly, I’ll briefly explain how to find a normalization constant. Say we have some integral, I
that is evaluated as follows:

I =
∫
R
ψ(x)ψ∗(x)dx = c

where c ̸= 0 and R means bounds of −∞ to +∞. It’s important to note that the bounds of the system
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may not always be R. Instead, it could be 0 −→ L, 0 −→ 2π, {0 −→ ∞, 0 −→ 2π, 0 −→ π}, etc. To
have this integral evaluate to 1, we divide I by c.

I = 1
C

∫
R
ψ(x)ψ∗(x)dx = 1

Since 1
C is a constant that we can remove from the integral, we can apply them to our wavefunction, ψ

by doing ψ =
√

1
c · ψ since: √

1
c
ψ ·
√

1
c
ψ = 1

c
|ψ|2

thus ∫
R

√
1
c
ψ(x)

√
1
c
ψ(x)dx −→ 1

c

∫
R
ψ(x)ψ∗(x)dx = c

c
= 1

Differential Equations

Many people often refer to differential equations as the language that the universe speaks in.
Motion, population growth, and any phenomena dealing in change with respect to another variable(s)
can be modeled using these equations. Further, it is important to note that solving these equations is
contingent upon integration to go from the differential form to the "normal" function.

When solving these equations, there are a variety of techniques and patterns to be aware of, but
for now, I will focus on one main one. It is important to recall that sin(x) and cos(x) are functions
where, upon differentiating twice, return the same function with some coefficient in front.

d2

dx2 [sin(αx)] = −α2sin(αx)

d2

dx2 [cos(αx)] = −α2cos(αx)

Here, α is some constant. Perhaps the most useful function when solving differential equations is eαx

since its first derivative and all subsequent ones produce the same function with some coefficient in
front.

d

dx
[eαx] = αeαx → d2

dx2 [eαx] = α2eαx...

Given these properties, one should always consider eαx if the differential equation has a second derivative
present with a first derivative and/or the function itself. More rigorously, if the operator is any order
derivative, eαx is always an eigenfunction.

Ex. d
2y

dx2 − 3dy
dx

+ 2y = 0

Here, the second derivative is present with the first derivative and the function without differentiation.
This signals that you should consider eαx or some linear combination of exponential functions (a linear
combination is just adding functions together with potentially different coefficients; an example being
c1e

αx + c2e
αx). In this case, we will guess that the function, y = y(x) = f(x), has the form of eαx. That

is to say,
y = f(x) = eαx
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We must now find the value(s) of α, and this is done by substituting y = eαx

d2

dx2 [eαx] − 3 d

dx
[eαx] + 2[eαx] = 0

α2eαx − 3αeαx + 2eαx = 0

α2 − 3α+ 2 (eαx) = 0

α2 − 3α+ 2 = 0

We can now factor this equation and solve for the values of α that make this equation true

(α− 2)(α− 1) = 0 → α = 1 , α = 2

Based off of this result, both ex and e2x satisfy the initial differential equation.

For α = 1
d2

dx2 [ex] − 3 d

dx
[ex] + 2[ex] = 0

produces
ex − 3ex + 2ex = 0

which is correct

For α = 2
d2

dx2

[
e2x
]

− 3 d

dx

[
e2x
]

+ 2[e2x] = 0

produces
(22)e2x − 3 ∗ 2e2x + 2e2x = 0

4e2x − 6e2x + 2e2x = 0

which is also correct. Finally, it is important to recall that a derivative is a linear operator. That is to
say it can be distributed:

d

dx
[f(x) + g(x)] = d

dx
[f(x)] + d

dx
[g(x)] = df(x)

dx
+ dg(x)

dx

Leveraging this property, a linear combination of ex and e2x can be taken to make a general solution.

y = c1e
x + c2e

2x

Plugging this into the differential equation:

d2

dx2

[
c1e

x + c2e
2x
]

− 3 d

dx

[
c1e

x + c2e
2x
]

+ 2[c1e
x + c2e

2x] = 0
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Using linearity to separate and factoring the constant terms out:(
c1
d2

dx2 [ex] − 3c1
d

dx
[ex] + 2c1[ex]

)
+
(
c2
d2

dx2

[
e2x
]

− 3c2
d

dx

[
e2x
]

+ 2c2[e2x]
)

= 0

It was shown above that both sets of parentheses go to zero. The addition of the two constants make
no difference since they will scale each term by the same amount. Writing this out explicitly:

(c1e
x − 3c1e

x + 2c1e
x) +

(
4c2e

2x − 6c2e
2x + 2c2e

2x
)

= 0
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